

Testing Tests
Improving test methodology, step by step

Tübix 2024, Peter Hrenka, Robert Bosch GmbH

About myself

Peter Hrenka, studied Computer Science and Mathematics in Tübingen

Long time Linux user

Currently Staff Engineer at Bosch Cross-Domain Computing Solutions

Core Circle Member in the Bosch Developer Advocate Network

Developing an embedded C++ library for Bosch Automotive (XC-AS)
Main features containers and math

Started career as 3D Software Developer for a Finite Element Tool

Hobbies
HAM Radio Operator/Trainer

 Player

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 1

Scope of this talk

Topics and examples are related my day-job
C++ Template library for Containers and Mathematics (VFC)

The focus topic will be on unit tests
Some concepts may be applicable for other testing tasks

I will be using Googletest for the examples

This is not an overview of research but rather a practitioners view and opinion
I do not claim that anything is a new idea

Not everything I will present has been proven in use (yet)

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 2

Requirements for Testing

template<typename Iter>
void sort_sequence(Iter start, Iter stop)
{
 auto first = *start;
 for (auto it = start; it != stop; ++it) {
 *it = first++;
 }
}

TEST(sort, test)
{
 MyVector<int> vec { 5, 1, 8 };
 sort_sequence(vec.begin(), vec.end());
 EXPECT_TRUE(std::is_sorted(vec.begin(), vec.end()));
}

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 3

Requirements

Naming matters!

Requirements matter!!

Every program is correct according to some specification:
"The function sort_sequence shall generate an ascending sequence in the
given range where the generated sequence starts with the first element of the
given sequence and the following elements are incremented by the value 1
each"

No test without specification
Become aware of implicit assumptions

If a function contains "sort" it is expected to only perform a permutation of the
original elements

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 4

First Break

Yes, we can test template functions and classes templates
We have to clarify the requirements

We have to think about the runtime test data

We have to define the compile-time variations we want to test

Basic testing patterns seem inadequate to the expressive power of templates
Copy & paste is not the answer

More structure and clarity would be nice

Guiding Question: How do I know when my testing is done?

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 5

Our requirements towards tests

Easy to generalize
Reduce usage of "magic numbers"

Easy to extend
Both in the runtime and in the compile-time dimension

Easy to identify what is tested

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 6

"Templated Tests"

Using googletest Link

#include <vector>
#include "gtest/gtest.h"

template <class T>
class BasicTypesTest : public testing::Test {};

using BasicTypes = testing::Types<char, int, float>;
TYPED_TEST_SUITE(BasicTypesTest, BasicTypes);

TYPED_TEST(BasicTypesTest, TestContainerConstruction)
{
 MyVector<TypeParam> vec{ TypeParam{1}, TypeParam{2}, TypeParam{3}};
 EXPECT_EQ(vec.size(), 3);
}
TYPED_TEST(BasicTypesTest, TestContainerAccess) {
 MyVector<TypeParam> vec{ TypeParam{1}, TypeParam{2}, TypeParam{3}};
 EXPECT_EQ(vec[0], TypeParam{1});
}

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 7

https://github.com/google/googletest/blob/main/googletest/samples/sample6_unittest.cc

Issues with "Templated Tests"

Heavy usage of structural macros
Hard to customize per test, need a new test suite for every combination

Sometimes bad interaction with C++ namespace s

"Magic" name TypeParam
There can be only one template parameter

Problems with modularity and extendability
Which macros can we put in the header and which in a .cpp file?

We want to be able to add more types in independent projects

Where to handle runtime variations?

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 8

Our approach

Avoid using the top-level macros

Use the fixture base class testing::test directly

Implement the missing infrastructure without the use of macros

More control over instantiations

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 9

/// container_test.hpp
#include "gtest/gtest.h"

namespace vector_tests {

template <class T>
class BasicTypesTest : public ::testing::Test {}; // no change

template<typename Type>
class TestContainerConstruction : public BasicTypesTest<Type>
{
 void TestBody() override { // interface of googletest
 MyVector<Type> vec{ Type{1}, Type{2}, Type{3}};
 EXPECT_EQ(vec.size(), 3);
 }
};

template<typename Type, int Size>
class TestContainerAccess : public BasicTypesTest<Type>
{
 void TestBody() override {
 MyVector<Type> vec{ Type{1}, Size};
 EXPECT_EQ(vec[Size-1], Type{1});
 }
};
}

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 10

/// cpp
#include "container_test.hpp"

template<typename... Types>
struct Instantiate { /* call internal gtest APIs to register tests*/ };

namespace vector_tests {

Instantiate<
 TestContainerConstruction<char>,
 TestContainerConstruction<int>,
 TestContainerConstruction<float>
> g_basicConstruction;

Instantiate<
 TestContainerAccess<char, 10>,
 TestContainerAccess<int, 10>,
 TestContainerAccess<float, 100>
> g_basicAccess;
}

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 11

Advantages of custom instantiations

Instances can be grouped by topic of function

more freedom to distribute test on separate compilation units
e.g. customer-specific files

Complete freedom over number and kind of template parameters for test classes

no issues with namespaces

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 12

Test Fixtures

Typically, all the setup for the test can be done in the constructor of the fixture
class

Specific tests derive from the fixture and re-use the members

template <class Type>
struct TemplateFixture : public ::testing::Test {
 MyVector<Type> classes[4]{
 MyVector<Type>{}, // empty
 MyVector<Type>{0}, // one element
 MyVector<Type>(1, 100), // many identical
 MyVector<Type>{2, 3, 5, 7} // four primes
 };
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 13

The EquivalenceClasses pattern

/// container_test.hpp
template <class T>
class TemplateFixture : public ::testing::Test {
 using Type = T;

 struct EquivalenceClasses
 {
 EquivalenceClasses() { /* initialize members */ }
 T classes[];
 };
};

template<typename Type>
class TestContainerAccess : public TemplateFixture<Type>
{
 void TestBody() {
 using EquivalenceClasses = typename TestContainerAccess::EquivalenceClasses;
 EquivalenceClasses eq{};
 for (auto eqClass : eq.classes) { ... }
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 14

Advantages of equivalence class pattern

Can be decoupled from test class infrastructure

Can be instantiated multiple times in the same test function

Can be instantiated as const

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 15

Example: Testing a copy assignment operator - Test

// Test class using equivalence classes
template<typename Type>
class TestCopyAssignment : public TemplateFixture<Type>
{
 void TestBody() {
 using EquivalenceClasses = typename TestCopyAssignment::EquivalenceClasses;
 const EquivalenceClasses eqSrc{};
 for (const auto& src : eqSrc.classes) {
 EquivalenceClasses eqDest{}; // re-construct for every src
 for (auto& dest : eqDest.classes) {
 dest = src;
 EXPECT_EQ(src.size(), dest.size());
 EXPECT_EQ(src, dest);
 }
 }
 }
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 16

Example: Testing a copy assignment operator - Instances

namespace container_tests {

// cpp file for basic data types
TestInstance<TestCopyAssignment<char>,
 TestCopyAssignment<int>,
 TestCopyAssignment<float>
 > g_basicCopyAssignment;
}

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 17

Testing Example

int add(int a, int b) { return a+b; }

TEST(addition, all)
{
 for (int i=0; i<std::numeric_limits<int>::max(); ++i)
 {
 int res{i};
 for (int j=0; j<std::numeric_limits<int>::max(); ++j)
 {
 EXPECT_EQ(add(i,j), res);
 ++res; // parallel construction
 }
 }
}

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 18

ASM generation compiler returned: 0
Execution build compiler returned: 0
Program returned: 143
 Killed - processing time exceeded
 Program terminated with signal: SIGKILL
 Running main() from gtest_main.cc
 [==========] Running 1 test from 1 test suite.
 [----------] Global test environment set-up.
 [----------] 1 test from addition
 [RUN] addition.all

Too slow for Compiler Explorer
Golden Rule of Compiler Explorer: If it does not run on Compiler Explorer, it is
too long for a unit test.

Tübix 2024, Peter Hrenka, Robert Bosch GmbH

Fundamental Limitation of Testing

It is impossible to test everything
Some notable exceptions for functions with a limited parameter space (e.g.
square)

Everything with more than 32 bit worth of data is too much

Most of the time, we cannot test everything

Incomplete tests can not prove the correctness

Even if we could, it might not be a good idea
financial and environmental impact may not be justified

Keep your unit tests in the single digit number of seconds

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 19

Choosing equivalence classes

Equivalence classes can be

A representative object state, e.g. empty, one element, many elements

A combination of parameters to call a (member) function

A combination of both (object state and parameters)

Prefer runtime variation over compile-time variation where possible

For algorithms consider the special floating point values

±0, ±∞, ± NaN

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 20

Choosing types

For containers consider
Builtin primitive types

Types with different alignments

const qualified types

Types with deleted special member functions
Move-only types

Non-movable and non-copyable types

For mathematical functions consider
Signed types

Floating points types

Non-primitive math objects, e.g. vectors, matrices, unit types
Tübix 2024, Peter Hrenka, Robert Bosch GmbH 21

Break number two

We have some nicer way of writing tests
Run-time vs. compile-time variations

Are we finally done now?

Seems like we're moving farther away
Not everything can be tested

Be careful not to test too much

Conflicting goals
Do not take too much time

But test "as well as possible"

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 22

Coverage to the rescue?

Coverage: Measure the code paths taken during testing

Often measured as percentage of covered code lines relative to the total number
of code lines

Definitely useful!

But: Coverage is often used as a measure to ensure that a test is "complete"

A common interpretation:
100% coverage test complete / good

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 23

Problems with coverage in presence of templates

Template specializations

enable_if and other SFINAE constructs

Compiler explorer as a ad-hoc coverage tool (only works for templates!)

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 24

Interpretations of template coverage

There are two main interpretation of template-aware coverage:

1. The line must be covered for all template instantiations of a class

2. The line must be covered for some template instantiations of a class

(line can also be a statement or decision, depending on the type of coverage)

Interpretation 1 is very strong and quickly becomes unfeasible when metaprogramming
techniques are used.

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 25

Is coverage the answer?

No.

Here the test does not even have a
test macro that could verify an
expectation.

Coverage does not prove that the
test is appropriate. Only that you
have not accidentally missed
anything.

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 26

What is Testing, anyway?

High Level View: A test is a filter for correct
programms

Good programs pass ->

Bad programs clog the filter ->

Usual API
Success: Progress output, green
colors, return code 0

Failure: Error output, expected and
actual values, return code != 0

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 27

Space of all programs

programms that compile

correct

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 28

programms that compile

correct

false positive area

Test

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 29

A generalized approach

Consider the function under test
to be a parameter to the test!

Passing the correct function we
expect "pass"

Passing a defective function we
expect a "fail"

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 30

"Short-selling" tests

Provide obviously inadequate functions to the test expecting failure

Only a test that can (provably) fail is a good test!

Good negative testing functions

Empty functions

Functions returning or writing constants

Functions with a similar interface but different semantics
Drop or add parameters

Write small wrapper or mockups

Old, buggy versions

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 31

Adversarial Testing

// Guard object to signal failure to detect
template<bool good>
struct AdversarialGuard;

template<>
struct AdversarialGuard<true> { // normal test mode
 void add(bool) {}
};

template<>
struct AdversarialGuard<false> { // adversarial mode
 void add(bool pass) { if (!pass) ++numFail; }
 ~AdversarialGuard()
 {
 EXPECT_NE(numFail, 0); // we must have at least one failure
 }
 int numFail{0};
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 32

Adversarial Testing Support Macros

Unfortunately, there is no infrastructure customizing googletest the way I need it, so
let's just define some new macros:

#define ADV_EXPECT_TRUE(x) if constexpr (!good) { guard.add(x); } else EXPECT_TRUE(x)
#define ADV_EXPECT_FALSE(x) if constexpr (!good) { guard.add(!x); } else EXPECT_FALSE(x)
// ... and everything else you need

Note the lack a trailing semicolon so we can still use error output using
operator<< as usual.

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 33

Example: Sorting

Test Data

template <class Type>
struct TemplateFixture : public ::testing::Test {
 struct EquivalenceClasses
 {
 MyVector<Type> classes[4]{
 MyVector<Type>{}, // empty
 MyVector<Type>{0}, // one element
 MyVector<Type>(1, 100), // many identical
 MyVector<Type>{2, 3, 5, 7} // four primes
 };
 };
};

Example: https://godbolt.org/z/eqocbEovn

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 34

https://godbolt.org/z/eqocbEovn

Adversarial test for sorting

template<typename SortFunction, bool good, typename Type>
struct TestSort : public TemplateFixture<Type>
{
 void TestBody() {
 AdversarialGuard<good> guard;
 typename TestSort::EquivalenceClasses inputs;
 auto sorter = SortFunction{};
 for (auto& data : inputs.classes) {
 sorter(data.begin(), data.end());
 ADV_EXPECT_TRUE(std::is_sorted(data.begin(), data.end()));
 }
 }
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 35

Test function wrappers

struct Sort {
 template<typename Iter>
 void operator()(Iter begin, Iter end) {
 std::sort(begin, end);
 }
};

struct NonSort {
 template<typename Iter>
 void operator()(Iter begin, Iter end) { /* I am feeling lucky */ }
};

struct Reverse {
 template<typename Iter>
 void operator()(Iter begin, Iter end) {
 std::reverse(begin, end);
 }
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 36

Test instances

TestInstance<
 // normal tests
 TestSort<Sort, true, char>,
 TestSort<Sort, true, int>,
 // adversarial tests
 TestSort<NonSort, false, char>,
 TestSort<Reverse, false, char>
> g_sortInstances;

Oh no! A failure!

[----------] 1 test from TestSort<NonSort, false, char>
[RUN] TestSort<NonSort, false, char>.
/app/example.cpp:35: Failure
Expected: (numFail) != (0), actual: 0 vs 0
[FAILED] TestSort<NonSort, false, char>. (1 ms)
[----------] 1 test from TestSort<NonSort, false, char> (1 ms total)

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 37

Analysis of adversarial test failure

No failures were recorded for the adversarial test case NonSort

We would expect the test to be able to detect if a sort function does nothing

Why was is not detected that nothing has changed?

All inputs were already sorted
Easy to fix by adding unsorted equivalence class

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 38

Re-using old examples for profit

struct GenerateSequenceFromFirst
{
 template<typename Iter>
 void operator()(Iter start, Iter stop)
 {
 if (start == stop) return; // we have empty containers, so we need this
 auto first = *start;
 for (auto it = start+1; it != stop; ++it)
 {
 *it = first++;
 }
 }
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 39

Analyzing another adversarial test failure

The test does not check if the original items are present in the result

template<typename SortFunction, bool good, typename Type>
struct TestSort : public TemplateFixture<Type>
{
 void TestBody() {
 AdversarialGuard<good> guard;
 typename TestSort::EquivalenceClasses inputs;
 auto sorter = SortFunction{};
 for (auto& data : inputs.classes) {
 const auto copy = data;
 sorter(data.begin(), data.end());
 ADV_EXPECT_TRUE(std::is_sorted(data.begin(), data.end()));
 for (auto& oldItem : copy) {
 ADV_EXPECT_TRUE(std::find(data.begin(), data.end(), oldItem)!=data.end());
 }
 }
 }
};

Solution: https://godbolt.org/z/v9xz465Tq
Tübix 2024, Peter Hrenka, Robert Bosch GmbH 40

https://godbolt.org/z/v9xz465Tq

programms that compile

correct

false positive area

Test

Adversarial Test

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 41

Safety criticalMagic area

Prototype area

AI written Tests + Adversarial Testing

AI written Tests

Formal Proof

Adversarial Testing

Mutation Testing

Test Driven Development

Unit Tests + Coverage

Unit Tests

Intensive Manual Testing

Sloppy Manual Testing

No Testing Low Effort High Effort

Lo
w

 C
on

fid
en

ce
H

ig
h

C
on

fid
en

ce

Testing Methodologies

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 42

How to test the test of the test?

Hold-out set: Keep some specimens for later
specimens can be data sets or test functions (both good and bad)

Mutation testing: Tweak the implementations
Cool if it can be automated, but changing an algorithm does not mean that it
fails to fulfill the specification

Expected high manual effort for verification

Time will tell: Higher level product metrics

Double blind tests

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 43

Conclusion

It is possible to separate equivalence class definition and testing code using a
common test framework

only small additions are required

The quality of the tests can be improved by providing adversarial implementations
that must be detected by the test

Simple examples lead to significant improvement of test quality (and by
extension of the code)

High potential as a verification step of AI generated Testing Code

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 44

Thanks to

Matt Godbolt for compiler explorer

The MARP framework for a wonderful way to write presentations

Tübix for providing this great conference

The people attending ACCU who gave me inspiration and ideas for this talk

The marvelous MOM team at Bosch

Reza Ahmadi for teaching me a lot about testing and responsibility diffusion

The vibrant DAN developer community at Bosch

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 45

https://marp.app/

Questions?

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 46

Backup slides

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 47

So you really want to know how to hack googletest

template< typename... TestClasses >
struct TestInstance {};

template< typename TestClass, typename... TestClasses >
struct TestInstance< TestClass, TestClasses... >
 :TestInstance<TestClasses...>
{
 TestInstance()
 {
 MakeAndRegisterTestInfo(
 testing::internal::GetTypeName<TestClass>().c_str(),
 "",
 nullptr,
 nullptr,
 testing::internal::CodeLocation("", 0),
 testing::internal::GetTypeId<TestClass>(),
 TestClass::SetUpTestCase,
 TestClass::TearDownTestCase,
 new testing::internal::TestFactoryImpl< TestClass >);
 }
};

Tübix 2024, Peter Hrenka, Robert Bosch GmbH 48

