An eBPF introduction

The in-kernel virtual machine

Intro

e Lots of slides -> I'll have to hurry a bit #speedrun
o But longer questions at the end / after the talk please
e Background: My master’s thesis (~ 2 years ago)
e The images are not from me (s. hyperlinks for the sources)
e [I'll make the slides available

What is eBPF?

e Oirigin: eBPF = extended Berkeley Packet Filter (s. next slide)
e Nowadays: a technology / new type of software

e An in-kernel virtual machine (VM)

o Abitlike running Java bytecode in the Java Virtual Machine (JVM)
o Analogy: Similar to the JavaScript support of web browsers (-> programmability)

e “eBPF is a revolutionary technology with origins in the Linux kernel that can
run sandboxed programs in an operating system kernel. It is used to safely
and efficiently extend the capabilities of the kernel without requiring to change
kernel source code or load kernel modules.”

The origin of eBPF

tcpdump -i lo host 127.0.0.1 and port 80

e BSD Packet Filter (BPF): 1992 - For network packet filters (monitoring)
e Originally: BPF, now called cBPF (classic Berkeley Packet Filter)

o Main use: Filtering packets. Userspace program (tcpdump) can supply the filter

o Implementation: A bytecode interpreter for an in-kernel VM

o |ISA: 32 bit (few fixed-length instr.), accumulator, index, and 16 “scratch memory store” regs.
e Available on most Unix-like systems, not just on Linux

o E.g. {Free,Net}BSD (origin), DTrace on (Open)Solaris / illumos (Linux: bpftrace)

e eBPF is the successor of cBPF
o extended Berkeley Packet Filter (since Linux 3.18)
o General purpose RISC IS (designed for writing programs in a subset of C; helper functions)
o 11 64-bit reqgisters (32 bit subregisters, r10: ro frame pointer), PC, and 512 byte stack
o Nowadays: Only eBPF (cBPF transparently translated to eBPF)

e BPF is now a technology / new type of software

https://www.tcpdump.org/papers/bpf-usenix93.pdf

History (eBPF constantly grows)

1992: BSD Packet Filter (BPF paper; ISA + register-based pseudo-machine)
2011: 3.0: cBPF JIT

2014: 3.15/3.18: eBPF

2014: LLVM

2015: 3.19: Socket tracepoint

2015: 4.1: Traffic control (TC) classifier tracepoint

~2015: BCC: BPF Compiler Collection

2019: 5.3: Bounded loops

2019: GCC

2021: eBPF foundation (Linux Foundation announcement)

https://www.iovisor.org/technology/bcc
https://ebpf.io/foundation/
https://www.linuxfoundation.org/press/press-release/facebook-google-isovalent-microsoft-and-netflix-launch-ebpf-foundation-as-part-of-the-linux-foundation

eBPF programs are event-driven (attached to a code path)

e Hooks/tracepoints: Network events (new packet), system calls (application),
kernel tracepoints, etc. or even custom kernel/user probes ({k,u}probe)

=2 [g,

execve()

write() read() sendmsg() recvmsg()
X D | HesrF Sscall [syscall
c = Scheduler] WespF WeBPF
|
< v

v |
[File Descriptor] Sockets geap}

)
int syscall__ret_execve(struct pt_regs *ctx) E VFS ﬁeBPI: TCP/IP ﬁea;t-'
{ ()
struct comm_event event = { N/ [Block Device] [Network Device)
.pid = bpf_get_current_pid_tgid() >> : | ? | ?
.type = TYPE_RETURN, HeBPF WeBPF

’ ‘| ‘|

bpf_get_current_comm(&event.comm, sizeof(event.comm)); =

comm_events.perf_submit(ctx, &event, sizeof(event)); [& Storage] % Network ‘1
W eBPF

6

return

https://ebpf.io/static/hook_overview-99c69bbff092c35b9c83f00a80fed240.png

Why eBPF?

e Safe/secure/sandboxed: Bytecode verified before running it (nho DOS, accidental
crashes, arbitrary memory access, etc.)
e Fast/performant (close to natively compiled in-kernel code): Just-in-time (JIT)

compiler converts BPF instructions into native code that runs in kernel-space
o Programs can (limitations!) even be offloaded to HW

Flexible: General purpose enough for many use-cases
Stable APl and ABI (unlike kernel modules)
Portable: Even user-mode interpreters (via pcap API, implemented by libpcap on

Linux; or via uBPF) that support Linux and non-Linux systems; and Windows support
o CO-RE (Compile Once Run Everywhere): Support multiple kernel versions without recompiling

A lot of existing tools and well supported (libraries, applications, languages, etc.)
e Compilers for higher-level languages: C, a subset of P4, Rust (aya), even Python, etc.

https://nakryiko.com/posts/bpf-portability-and-co-re/
https://aya-rs.dev/book/

Using higher-level languages

e Lots of different languages supported (C, Go, Rust, Python, Lua, etc.)
o Even special languages (DSLs), e.g. P4 (p4c-ebpf (TC), p4c-xdp, p4c-ubpf), BCC (toolkit and
library), and bpftrace (high-level tracing language)

e Compilers with BPF target: LLVM (2014; also BCC) and GCC (2019)
e Before that: eBPF assembly -> bpf_asm/bpfc/ubpf -> eBPF bytecode

e LLVM example:
ecod®
% b\l‘ eBPF
Program Program

clang -target bpf

https://ebpf.io/static/clang-a7160cd231b062b321f2a479a4d0848f.png

Loading and verification

e Loading: Manually (bpf() syscall / library) or via iproute2 (ip/tc), etc.

[Process }

sendmsg() : Arecvmsg()

L syl _J

Process

eBPF
é T) ‘ Sockets
c .
TCP/IP
S 64 L
ST ,
— \/ == program ; Network Device

(@eePF JIT Compiler |

https://ebpf.io/static/loader-7eec5ccd8f6fbaf055256da4910acd5a.png

eBPF helper functions

e Limited but stable API (no arbitrary kernel functions) [Procass]

o Fast growing (XDP, new use-cases, etc.); depends on prog. type
e See bpf-helpers(7) or include/uapi/linux/bpf.h sendmsg() Trecvmsg()
e Examples: Map access and network packet manipulation
L Syscall

HeBPF
O v
§ QC) [Sockets
‘e 2
5 QLJ !Eum i bpf get prandom u32(); W eBPF TCP/IP
N [...] [- :
etwork Device

10

https://ebpf.io/static/helper-6e18b76323d8520107fab90c033edaf4.png

State: eBPF maps (key/value store)

e Can be accessed from eBPF program(s) and user space
e Many (10+) different types exist (e.g. arrays and hash tables (optional: LRU))

[Process J [Process J
A

sendmsg() frecvmsg()

[Syscall] L Sg/sc.allJ
WeBPF

\ A
— [Sockets

‘_
eBPF
Maps |+ empr TCP/IP

[Network Device

Linux
Kernel

11

https://ebpf.io/static/map_architecture-e7909dc59d2b139b77f901fce04f60a1.png

Example

C source code

ELF-compiled BPF

bpf prog.c bpf prog.o
<> >
o 4
<
LLVM/clang

Y
Userspace /’
Kernel \
Q cls_bpf y

Packets

tc

-

User progran

—

bpf() syscall f-------=------=------.

r>

Network stack w

r}

tc ingress

tc egress

Net device

2

~

Net device

2

12

https://qmonnet.github.io/whirl-offload/img/misc/eBPF-tc_archi.svg

XDP: eXpress Data Path

e High-performance packet processing

e eBPF program runs at the lowest level of the (RX) network stack
o Immediately after packet is received (i.e. before any parsing/processing)

RX CPU
ﬂFP' cati Control Application
i e Load/Configure BPF

..

XDP Packet Processor
Packet Steering
(RPS/RFS)

- - -

Other CPUs

Application

B L L L T T e L T

3 prop {} Receive Local TCP/IP Stack
GRO
- v -
= [_% Driver/Device = S
() (= (— ()

13

https://www.iovisor.org/wp-content/uploads/sites/8/2016/09/xdp-packet-processing-768x420.png

Main use cases (currently)

e Security e Networking
N A
Searr, A eBPF
v
@ —
e Tracing and profiling e Overvability and monitoring
- Metrics ——
Tilaci(s LPVOCESS] - Histograms eBPF
e aeBPF - Events Maps

LKerneI | lVFS @';,BPF

14

Problems

e \When using C: High chance for compiling an invalid eBPF program

o User will only know when loading/running it
o BCC: Aims to provide a BPF-specific frontend -> feedback from the compiler

e Stable ABI can break when using kernel internal data structures (requires
compiling with kernel internal headers) for tracing programs and tracepoints

can change -> but nowadays: CO-RE
o l.e. (some) eBPF programs can still loosely depend on the kernel version

e Restrictions/limitations: The verifier imposes a lot of restrictions (length/size,
stack size, termination / finite loops, memory access, no uninitialized
variables, finite and limited complexity, etc.) and the APl is limited to a small
set of helper functions (and cannot be extended via kernel modules)

15

Problems Il

e Limited APl (many helper functions but might still not be enough)
o Cannot be extended via kernel modules and no arbitrary kernel functions

e Lack of documentation
o Especially official documentation! (Exception: eBPF helper functions)

16

Example eBPF users, use-cases, and applications

e https://ebpf.io/projects/ (lots of open-source applications/projects!)

e Industry users (https://ebpf.io/case-studies/): Google, Cloudflare, Android,
Meta (~40/server), Netflix (~14/server), Red Hat, etc. (also via systemd)

e Use-cases: Networking (SDN, monitoring, firewalls, ...), security (seccomp,
IDS, containers, observability), kernel debugging, perf analysis, etc.

e Anew type of software: Execution User Compil- Security Failure Resource
model defined ation mode access
User task yes any user abort syscall,
based fault
Kernel task no static none panic direct
BPF event yes JIT, verified, error restricted

CO-RE JIT message helpers
17

https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://ebpf.io/projects/
https://ebpf.io/case-studies/

Modern Linux is becoming Microkernel-ish Modern Linux: A new OS model

User-mode Kernel-mode
Applications Services & Drivers
. User-mode Kernel-mode
BPF | | BPF| |BPF
eBPF ImpaCt i I I Applications Applications (BPF)
Smaller r :
Kernel i
T— System Calls BPF Helper Calls
e Making the Linux kernel reprogrammable Kemel
o Vs. source-code changes, kernel module, etc.
Hardware
o []
Q % [Process] User [Process }
wn
Q . . & . .
O B witeq) | | reade) cenansg() | |reomsg(y MiOdern Linux: Event-based Applications
Syscall { (sgszriitﬁir;:iz?)] Syscall User-mode Kernel-mode
Rp— Applications Applications (BPF)
X E [File Descriptor] [Sockets]
> U.E. >
= (VFs R — TCP/IP)
=5 9 S (\ | / 4 [
4 [Block Device |« > Network Device] AN 1 L 1
Kernel
Scheduler
Kernel Evantc
t
; Hardware Events (incl. clock)
T [E Storage] [% Network]

https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://ebpf.io/static/kernel_arch-560d57883f7df9beafb47eee1d790247.png

Future

e New features (helper functions, hooks, less verifier restrictions, etc.)

e Many new use-cases and users (e.g. containers, networking, sandboxing,
tracing, and even device drivers)

e Unprivileged eBPF?

e Fully reprogrammable Linux kernel?

o But IMO not a path towards a microkernel (too much complexity and would require replacing
kernel subsystems with eBPF programs, a strict privilege level separation, and a clean API)

e Alternative to livepatching?
o To hotpatch kernel vulnerabilities or bugs (by changing control flow, input sanitization, etc.)

e Potential problems: Could result in less upstreamed fixes, features, etc.
e Potential advantages: Could help to avoid upstreaming special purpose code

19

End of presentation

e Thank you!
e Any questions?

20

Ecosystem overview

e Applications: https://ebpf.io/applications/

Use
Cases

User
Space

Kernel

Networking

A eBPF

Projects

Kernel Runtime

Security Observability &

Tracing

b¢ cﬁ Fe{léo

Ratran %

B-GOG®

Verifier & JIT oS
Runtime
Maps
O 2
Kernel Helper API sl M

HeBPF

AppUcaﬂén

HeBPF

- Tracing
- Profiling
- Monitoring

- Observability

- Security Controls

- Networking

- Network Security

- Load Balancing

- Behavioral Security

21

https://ebpf.io/applications/

BCC tracing tools

Linux bcc/BPF Tracing Tools
mysqld_gslower

opensnoop statsnoop ucalls uflow

c* java* node* php*

A hon* ruby* dbstat dbslower gethostlatency
syncsnoop uobjnew ustat E¥E o bashreadline memleak
\ uthreads ugc | sslsniff
filetop \ /
A filelife fileslower o + / syscount
vfscount vfsstat Applications killsnoop
cachestat cachetop Runtimes execsnoop
dcstat dcsnoop // exitsnoop
mount snoop System Libraries / pidpersec
v cpudist cpuwalk
trace \ » runglat runglen
;Eggézfmt System Call Interface é/ runqil?weg
cpuunclaime
funcslower VFS Sockets - deadlock
funclatency . .
stackcount Scheduler offcputime wakeuptime
profile File Systems | TCP/UDP B offwaketinms moftdxgs
. slabratetop
btrfsdist /V lume Man r [. ;
btrfsslower DIME andge P Virtual <«+— sﬁ;:];:il giziizk
ext4dist ext4dslower) . Memory P P
nfsslower nfsdist 4 Block Device Net Device Bavdisns
xfsslower xfsdist : . < criticalstat
v :g::i:zer / / Device Drivers ttysnoop
mdflush biotop biosnoop tcptop tcplife tcptracer
EiFEn biolatency bitesize tcpconnect tcpaccept tcpconnlat 11icstat |CPUs
ther: tcpretrans tcpsubnet tcpdrop L
capable sofdsnoop tcpstates

https://github.com/iovisor/bcc#tools 2019

22

https://raw.githubusercontent.com/iovisor/bcc/0cf8166505ba89f14545d6fc54d088aad127d870/images/bcc_tracing_tools_2019.png

Unprivileged eBPF

e Allows unprivileged users to load certain types of eBPF programs
o E.qg. socket filters

e Should be safe but in reality still many issues (-> currently many restrictions)
o Enabled by default but should be disabled (kernel.unprivileged bpf disabled)
o Many CVEs (privilege escalation, kernel crashes / DoS, etc.)
e Requires additional verifier checks / hardening (secure mode)
o Prevent leaking of kernel pointer values (+ no pointer arithmetic allowed?)
o Prevent speculative execution attacks
o Mark memory for eBPF program as read-only + constant blinding (prevents injecting code)
e Has been abandoned as unachievable
o But still interest from some and attempts to make it work
o Use-cases: Containers, seccomp, socket filters, etc.

e Future unclear (heated discussions)

23

Resources

e https://ebpf.io/

e Linux kernel BPF documentation (WIP)
o Linux Socket Filtering aka Berkeley Packet Filter (BPF)

o Various man-pages (bpf, bpf-helpers, etc.)
e Cilium project
o Introduction

o Documentation/Overview
o BPF and XDP Reference Guide

e Awesome eBPF

24

https://ebpf.io/
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.kernel.org/doc/html/latest/networking/filter.html#networking-filter
https://ebpf.io/
https://ebpf.io/what-is-ebpf/
https://docs.cilium.io/en/latest/bpf/
https://github.com/zoidbergwill/awesome-ebpf

Backup/WIP slides

25

eBPF verifier checks (WIP - changes too frequently)

e Program terminates (i.e. all loops are bounded)

26

