
Nix(OS): An overview 
Revolutionizing packaging and configuration management!

The Purely Functional Linux Distribution 1



About me

● Michael Weiss aka. primeos
● https://www.primeos.dev/
● First Nixpkgs commit: 2016-10-05
● I maintain <68 packages, 2 (5) modules, and 5 VM tests (2023-07-01)

○ Currently I lack time and have to reduce the number of packages that I maintain :(
● Email: nixos@primeos.dev

● Questions + feedback: Please just interrupt me at any time ;)
○ Questions are very welcome (but longer questions at the end please (due to time constraints))

2

https://www.primeos.dev/
mailto:nixos@primeos.dev


Motivation: Limitations of classical package managers

● Imperative vs. declarative management/administration
● Upgrades/configuration changes destructively update the system state 

(overwriting files in sequence -> temporary inconsistency)
● No configuration management
● State/mutable -> undeterministic builds -> not reproducible
● Different versions of a binary: Not possible (exceptions with version suffixes)
● Package conflicts (+ dependency resolution issues)
● No rollbacks
● Difficulty to get involved/started
● Limited “extensibility” (overlays / own package repos / overrides)

3



Why declarative, immutable, etc.?

Source: https://tisgoud.nl/2020/02/config-management-camp-2020-day-2/

4

https://tisgoud.nl/2020/02/config-management-camp-2020-day-2/
https://tisgoud.nl/2020/02/config-management-camp-2020-day-2/img/divergence-convergence-congruence.png


Nix(OS): Features

● Declarative system configuration
● Deterministic & Reproducible builds (+ complete rebuilds with caching)
● Immutable package store
● Transparent source/binary deployment
● Atomic upgrades and rollbacks (software & configuration)

○ Also: Automatic service reloads/restarts, etc.
● Unprivileged users can securely install software
● Multiple versions of a package (side-by-side, e.g. testing a new Apache 

version)

5



How?

● Nix expressions / Nix expression language (lazy, functional, dynamically typed)
○ A DSL to describes graphs of build actions ("derivations")

● Nix store (/nix/store/)
○ Packages prefixed by hash, e.g., /nix/store/y72i4llqf5zxvdp6b3j7ysixpdrid7qr-coreutils-9.1/
○ Hash: Captures all derivations (dependencies, configuration, etc.)

■ 160-bit truncations of SHA-256 encoded in base-32 (i.e. 32 characters) -> unique
○ Garbage collection (nix-collect-garbage)
○ New: Content Addressed Store (CAS)

● Symlinks (s. image)
○ For atomic updates and rollbacks

6

https://nixos.org/nix/manual/figures/user-environments.png


Main components

● Nix (package manager)
● Nixpkgs (Nix packages collection)
● NixOS (operating system (modules))

● nix-env, nix-shell, nix run, etc.

● NixOps (DevOps / cloud deployment tool)
● Hydra (Nix based continuous build system)
● PatchELF (change dynamic linker and RPATH)
● {cabal,go,node,pip,python,pypi,...}2nix

7



Optional: History

● ~2003: Started as a research project (with funding)
● 2004: First paper (many will follow)
● Nix package manager developed by Eelco Dolstra as part of his PhD research
● First NixOS prototype developed by Armijn Hemel as his master's thesis project
● Hydra developed as part of the LaQuSo Buildfarm project
● 2007: NixOS becomes usable + x86_64 support
● 2011: Migration from Subversion to Git(Hub)
● 2015: NixOS Foundation + First NixCon (Berlin)

8



Problems/drawbacks

● Learning curve (a completely different concept/approach -> new issues)
● Lacking manpower/workforce (e.g. for better testing/security/documentation)
● Running pre-compiled binaries
● Scripts with hard-coded paths don't work (even /bin/bash)
● Hydra / channel delays
● No LTS releases or super stable (i.e. old :P) branches
● Not all use-cases or configuration options supported

○ But: Some tricks available + PRs welcome ;)
○ And it’s always possible to override stuff

● No GUI for package/configuration management?
● Not all packages are reproducible (2016: 12.8% known not to be 

reproducible)

9



10

Repology (2023-07-01)

https://repology.org/repositories/graphs


Getting started

● Try out Nix: https://nixos.org/download.html
○ Can be used side-by-side with your regular package manager (on your current Linux distro)
○ $ sh <(curl -L https://nixos.org/nix/install) --daemon
○ nix-env, nix-shell/“nix run”, nix repl, etc.

● Try out NixOS (inside a VM or for real :D)
● Learning resources: https://nixos.org/learn.html
● Help/community: https://nixos.org/community/

○ Nix and NixOS are developed and used by a diverse and welcoming community from all 
around the world.

● Get involved: https://nixos.org/guides/contributing.html
○ Submit changes (Nixpkgs PR): https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md

■ Hint: Make sure to ping the right people

11

https://nixos.org/download.html
https://nixos.org/learn.html
https://nixos.org/community/
https://nixos.org/guides/contributing.html
https://github.com/NixOS/nixpkgs/blob/master/CONTRIBUTING.md


Bonus slides

12



Nix expressions / Nix expression language

● A DSL (not a GPL!)
○ Describes graphs of build actions ("derivations")
○ Packages, compositions of packages, configurations, ...

● Dynamically typed ("Nix won't be complete until it has static typing." 
@edolstra) - https://typing-nix.regnat.ovh/

● Lazy (a very important feature!)
● Purely functional (no side-effects, immutable store)
● Turing complete (e.g. Dhall is not -> dhall-nix)

13

https://typing-nix.regnat.ovh/
https://github.com/dhall-lang/dhall-nix


NixOS

● Implements a declarative and purely functional system configuration model
● Based on Nix (package + configuration management)
● NixOS modules (separation of concerns)

○ Form the full "system configuration"

14



Code

https://primeos.github.io/nixos-slides/index.html

15

https://primeos.github.io/nixos-slides/index.html

