
pidfds: Process file descriptors on Linux

Tuebix, 2019
Tübingen, Germany

Christian Brauner
Senior Engineer
Canonical Ltd.

christian@brauner.io
christian.brauner@ubuntu.com
@brau_ner
https://brauner.io/
https://people.kernel.org/brauner

mailto:christian@brauner.io
mailto:christian.brauner@ubuntu.com
https://twitter.com/brau_ner/
https://brauner.io/
https://people.kernel.org/brauner


A pidfd is a file descriptor referring to a process or a thread*.

* At some point in the future

Processes, Threads, PIDs, TIDs, fds, and other assorted nonsense



- dumb definition would be "executing instance of a program"
- a binary image
- memory (stack, heap)
- resources (file descriptors etc.)
- attributes (uid, gid, capabilities, etc.)

- fork() + exec() to spawn new process 
load binary image

struct linux_binprm
exec_binrprm()
-> search_binary_handler(<aout, elf, elf_fdpic, em86, flat, script>)

Processes

https://elixir.bootlin.com/linux/v5.2-rc2/source/include/linux/binfmts.h#L17
https://elixir.bootlin.com/linux/v5.2-rc2/source/fs/exec.c#L1690
https://elixir.bootlin.com/linux/v5.2-rc2/source/fs/exec.c#L1635


What does fork() do?
- duplicates/copies the calling process
- duplicated/copied process -> parent
- duplicate/copy -> child
- typical code pattern (abbreviated at the end):

int ret;
pid_t pid, wpid;

pid = fork();
if (pid < 0)

_exit(EXIT_FAILURE);

/* child */
if (pid == 0) {

printf("I am the child");
_exit(EXIT_SUCCESS);

}

/* parent */
wpid= waitpid(pid, NULL, 0);

Processes



- lightweight process
- processes exclusively own their resources (for the most part)
- threads share their resources (for the most part)

- clone() to create a new thread by specifying a bunch of flags; at least:
CLONE_THREAD, CLONE_FILES, CLONE_FS, CLONE_SYSVSEM, CLONE_SIGHAND,
CLONE_SETTLS, CLONE_VM 

- userspace library (part of libc) to manage threads: pthreads

Threads

 



- vague terminology
- kernel usually uses "task" which is best translated to "thread"
- single thread ("single-threaded") -> process
- multi-threaded -> multiple threads with one thread-group leader

Processes and Threads



- PID -> process identifier
- TID -> thread identifier
- TGID -> thread-group identifier

- single threaded processes PID == TID == TGID
- multi-threaded process TGID == PID != TID for non-thread-group leaders
- thread-group leader: first process that created a new thread
- thread-group leader stays zombie until all other threads in its thread-group have exited

(that has various interesting consequences… for some definition of "interesting")

PIDs, TIDs, and for the sake of confusion TGIDs



- Signals are one way for userspace to interact with processes and threads
- Can also be used for IPC, i.e. can be used to communicate between processes (or threads)

- Signals can be targeted at a whole thread-group or at a single thread.

Signals



You really wanted to kill that pesky little resource hungry bastard
but instead you killed a really essential little sucker.

Killing the wrong target



- PIDs are allocated cyclically
alloc_pid()
-> idr_alloc_cyclic()

- The standard PID limit is 32768 but can be up to 2^22

PID allocation

https://elixir.bootlin.com/linux/v5.2-rc7/source/kernel/pid.c#L159
https://elixir.bootlin.com/linux/v5.2-rc7/source/lib/idr.c#L117


- PID recycling is built into the allocation algorithm
- on high pressure systems it's rather easy to operate on the wrong process…

- possible mitigations:
- make PID allocation algorithm random
- bump limit to 2^22
- introduce UUIDs

- "but either way, I don't like correctness guarantees based on timing, especially if they might 
affect security"

PID recycling



- file descriptors:
- handle on a file {file, directory, device, etc…}
- private, stable reference

- skipping over a few details, an fd references a struct file in the kernel
- multiple fds can refer to the same struct file
- multiple struct file can refer to the same inode

int fd1 = open(something);
int fd2 = dup(fd1);
int fd3 = open(something);

pidfds

https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/fs.h#L922
https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/fs.h#L922
https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/fs.h#L922


- every struct file comes with a member called f_op which refers to a struct file_operations
- f_op essentially defines what "type" a file is

standard pattern in kernel comparing file operations to determine type of file, e.g. 
file->f_op == &pidfd_fops

- struct file also comes with another member called private_data
- used to stash file specific data, e.g. pidfds stash away a struct pid (the kernel's 

abstraction on top of tasks

- struct pid is the kernel-internal stable handle on a process

pidfds

https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/fs.h#L922
https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/fs.h#L929
https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/fs.h#L1791
https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/fs.h#L951
https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/pid.h#L57
https://elixir.bootlin.com/linux/v5.2-rc7/source/include/linux/pid.h#L57


- building a new process management API
- at some point you can manage processes completely without using PIDs

- Linux 5.1 (released)
- pidfd_send_signal()

- Linux 5.2 (to be released tomorrow or next Sunday)
- CLONE_PIDFD

- Linux 5.3 (upcoming merge-window)
- pidfd_open()
- polling support

- Linux 5.4
- WPIDFD

Can we do more? Maybe… ;)

pidfds: A New Hope^wAPI

https://elixir.bootlin.com/linux/v5.2-rc7/source/kernel/signal.c#L3642
https://elixir.bootlin.com/linux/v5.2-rc7/source/kernel/fork.c#L2028
https://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux.git/commit/?h=pidfd&id=32fcb426ec001cb6d5a4a195091a8486ea77e2df
https://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux.git/commit/?h=pidfd&id=b53b0b9d9a613c418057f6cb921c2f40a6f78c24
https://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux.git/commit/?h=pidfd_wait&id=a3f43f180c1f4324c35dcbef5b85ce3530c6b9fb


- systemd

- Android's LMKD
Google is already backporting the complete pidfd work
to all of their LTS kernels:

- 4.9: https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.9+backport%22
- 4.14: https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.14+backport%22
- 4.19: https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.19+backport%22

- LXC and LXD

pidfds: User? User!

https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.9+backport%22
https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.14+backport%22
https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.19+backport%22


- No!
- Solaris and the BSDs have them too

pidfds: A Linux invention?



pidfds: Process file descriptors on Linux

Tuebix, 2019
Tübingen, Germany

Christian Brauner
Senior Engineer
Canonical Ltd.

christian@brauner.io
christian.brauner@ubuntu.com
@brau_ner
https://brauner.io/
https://people.kernel.org/brauner

mailto:christian@brauner.io
mailto:christian.brauner@ubuntu.com
https://twitter.com/brau_ner/
https://brauner.io/
https://people.kernel.org/brauner

