
© Atos

Do Containers still not contain?
What‘s new in Container Security.

TUEBIX, JUNI 2018

Holger Gantikow

Auf Linkedin & Xing & Twitter zu finden

Link: https://www.hs-furtwangen.de/forschung/forschungsinstitute/institut-fuer-cloud-computing-und-it-sicherheit/

Source: https://www.flickr.com/photos/stalkerr/6096258356/ | https://www.flickr.com/photos/142095087@N03/36846337845/

With Containers…
and Security

Jetzt AtoS!

Link: https://jobs.atos.net/search-jobs?k=Tübingen&orgIds=5343 - ggf Filter auf Tübingen neu setzen

Aktuell (Tübingen):
6 Systems Engineer
n IT Security
1 Software Entwickler
1 IT Consultant
+ weitere

Immer: Praktika + Thesen
-> Initiativ bewerben!

Auch Stellen in München
Da allerdings viele Atos
Stellen, nicht „scAtos“

Rückfragen gerne an mich
holger.gantikow@atos.net

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
10

1. Container Runtimes

2. „Containers do not contain“

3. Image Security

4. Anomaly Detection

5. Update + Approaches

6. Und sonst so?

7. Zusammenfassung & Fazit

Inhalt

Einleitung

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
12

Warum gleich nochmal
Container?

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
13

Abhängigkeiten isolieren
+ Legacy Code

Conflicting Requirements + Dependencies
+ Code ausliefern

Source: https://xkcd.com/1987/

Configuration

Application

OpenMP

MPI

Compiler

Linux
”Flavor”

OpenFoam v3.0+

OpenMP 3.0

OpenMPI

GCC 4.7

CentOS

OpenMP 4.0

MPICH

GCC 4.8

Debian

OpenFoam v1706

OpenMP 4.5

MPICHv2

GCC 4.9

Ubuntu

Configuration 1 Configuration 2 Configuration n

OpenFoam v1612+

Mix and Match (3x3x3x3x3xn)

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
16

Workflowworkflow
+ Reproduzierbarkeit
„Frozen Environment“

+Flexibilität @HPC
Minimal Dockerfile for Image with $TOOL
FROM ubuntu
RUN apt-get update
RUN apt-get install $TOOL

Source: www.critic.co.nz/files/article-3423.jpg + Peltzer et al. (2016). EAGER: efficient ancient genome reconstruction.

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
18

Performance
„nah am Blech“

TABLE I. RESULTS FOR PXZ, LINPACK, STREAM, AND RANDOMACCESS. EACH DATA POINT IS THE ARITHMETIC MEAN OF TEN RUNS. DEPARTURE

FROM NATIVE EXECUTION IS SHOW WITHIN PARENTHESES ”()”. THE STANDARD DEVIATION IS SHOWN WITHIN SQUARE BRACKETS ”[]”.

Workload Native Docker KVM-untuned KVM-tuned
PXZ (MB/s) 76.2 [±0.93] 73.5 (-4%) [±0.64] 59.2 (-22%) [±1.88] 62.2 (-18%) [±1.33]

Linpack (GFLOPS) 290.8 [±1.13] 290.9 (-0%) [±0.98] 241.3 (-17%) [±1.18] 284.2 (-2%) [±1.45]
RandomAccess (GUPS) 0.0126 [±0.00029] 0.0124 (-2%) [±0.00044] 0.0125 (-1%) [±0.00032]

Tuned run not warranted
Stream (GB/s)

Add 45.8 [±0.21] 45.6 (-0%) [±0.55] 45.0 (-2%) [±0.19]
Copy 41.3 [±0.06] 41.2 (-0%) [±0.08] 40.1 (-3%) [±0.21]
Scale 41.2 [±0.08] 41.2 (-0%) [±0.06] 40.0 (-3%) [±0.15]
Triad 45.6 [±0.12] 45.6 (-0%) [±0.49] 45.0 (-1%) [±0.20]

tuning KVM by vCPU pinning and exposing cache topology
makes little difference to the performance. While further
experimentation is required to pinpoint the source of KVM
overhead, we suspect it is caused by the extra TLB pressure
of nested paging. PXZ may benefit from using large pages.

B. HPC—Linpack

Linpack solves a dense system of linear equations using
an algorithm that carries out LU factorization with partial
pivoting [21]. The vast majority of compute operations are
spent in double-precision floating point multiplication of a
scalar with a vector and adding the results to another vector.
The benchmark is typically based on a linear algebra library
that is heavily optimized for the specific machine architec-
ture at hand. We use an optimized Linpack binary (version
11.1.2.005)[3] based on the Intel Math Kernel Library (MKL).
The Intel MKL is highly adaptive and optimizes itself based
on both the available floating point resources (e.g., what form
of multimedia operations are available), as well as the cache
topology of the system. By default, KVM does not expose
topology information to VMs, so the guest OS believes it
is running on a uniform 32-socket system with one core per
socket.

Table I shows the performance of Linpack on Linux,
Docker, and KVM. Performance is almost identical on both
Linux and Docker–this is not surprising given how little OS
involvement there is during the execution. However, untuned
KVM performance is markedly worse, showing the costs of
abstracting/hiding hardware details from a workload that can
take advantage of it. By being unable to detect the exact nature
of the system, the execution employs a more general algorithm
with consequent performance penalties. Tuning KVM to pin
vCPUs to their corresponding CPUs and expose the underlying
cache topology increases performance nearly to par with
native.

We expect such behavior to be the norm for other similarly
tuned, adaptive executions, unless the system topology is
faithfully carried forth into the virtualized environment.

C. Memory bandwidth—Stream

The STREAM benchmark is a simple synthetic benchmark
program that measures sustainable memory bandwidth when

TABLE II. STREAM COMPONENTS

Name Kernel Bytes per FLOPS per
iteration iteration

COPY a[i] = b[i] 16 0
SCALE a[i] = q⇤b[i] 16 1

ADD a[i] = b[i]+ c[i] 24 1
TRIAD a[i] = b[i]+q⇤ c[i] 24 2

performing simple operations on vectors [21]. Performance
is dominated by the memory bandwidth of the system with
the working set engineered to be significantly larger than
the caches. The main determinants of performance are the
bandwidth to main memory, and to a much lesser extent, the
cost of handling TLB misses (which we further reduce using
large pages). The memory access pattern is regular and the
hardware prefetchers typically latch on to the access pattern
and prefetch data before it is needed. Performance is therefore
gated by memory bandwidth and not latency. The benchmark
has four components: COPY, SCALE, ADD and TRIAD that are
described in Table II.

Table I shows the performance of Stream across the three
execution environments. All four components of Stream per-
form regular memory accesses where once a page table entry
is installed in the TLB, all data within the page is accessed
before moving on to the next page. Hardware TLB prefetching
also works very well for this workload. As a consequence,
performance on Linux, Docker, and KVM is almost identical,
with the median data exhibiting a difference of only 1.4%
across the three execution environments.

D. Random Memory Access—RandomAccess

The Stream benchmark stresses the memory subsystem in
a regular manner, permitting hardware prefetchers to bring in
data from memory before it is used in computation. In contrast,
the RandomAccess benchmark [21] is specially designed to
stress random memory performance. The benchmark initializes
a large section of memory as its working set, that is orders
of magnitude larger than the reach of the caches or the
TLB. Random 8-byte words in this memory section are read,
modified (through a simple XOR operation) and written back.
The random locations are generated by using a linear feedback
shift register requiring no memory operations. As a result, there
is no dependency between successive operations permitting
multiple independent operations to be in flight through the
system. RandomAccess typifies the behavior of workloads with
large working sets and minimal computation such as those with
in-memory hash tables and in-memory databases.

As with Stream, RandomAccess uses large pages to reduce
TLB miss overhead. Because of its random memory access
pattern and a working set that is larger than the TLB reach,
RandomAccess significantly exercises the hardware page table
walker that handles TLB misses. As Table I shows, On our
two-socket system, this has the same overheads for both
virtualized and non-virtualized environments.

E. Network bandwidth—nuttcp

We used the nuttcp tool [7] to measure network bandwidth
between the system under test and an identical machine

"In general, Docker equals or exceeds KVM
performance in every case we tested. [...]

Even using the fastest available forms of par-
avirtualization, KVM still adds some overhead to
every I/O operation [...].

Thus, KVM is less suitable for workloads that are
latency-sensitive or have high I/O rates.

5. Conclusions and Future Work,
An Updated Performance Comparison of Virtual
Machines and Linux Containers

Zusammenfassung

Container vs. bare-metal:
Although containers themselves have almost no overhead, Docker is
not without performance gotchas. Docker volumes have noticeably
better performance than files stored in AUFS. Docker’s NAT also
introduces overhead for work- loads with high packet rates.
These features represent a tradeoff between ease of management and
performance and should be considered on a case-by-case basis.

An Updated Performance Comparison of
Virtual Machines and Linux Containers

Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio
IBM Research, Austin, TX

{wmf, apferrei, rajamony, rubioj}@us.ibm.com

Abstract—Cloud computing makes extensive use of virtual
machines (VMs) because they permit workloads to be isolated
from one another and for the resource usage to be somewhat
controlled. However, the extra levels of abstraction involved in
virtualization reduce workload performance, which is passed
on to customers as worse price/performance. Newer advances
in container-based virtualization simplifies the deployment of
applications while continuing to permit control of the resources
allocated to different applications.

In this paper, we explore the performance of traditional
virtual machine deployments, and contrast them with the use of
Linux containers. We use a suite of workloads that stress CPU,
memory, storage, and networking resources. We use KVM as a
representative hypervisor and Docker as a container manager.
Our results show that containers result in equal or better
performance than VMs in almost all cases. Both VMs and
containers require tuning to support I/O-intensive applications.
We also discuss the implications of our performance results for
future cloud architectures.

I. INTRODUCTION

Virtual machines are used extensively in cloud computing.
In particular, the state-of-the-art in Infrastructure as a Service
(IaaS) is largely synonymous with virtual machines. Cloud
platforms like Amazon EC2 make VMs available to customers
and also run services like databases inside VMs. Many Plat-
form as a Servive (PaaS) and Software as a Service (SaaS)
providers are built on IaaS with all their workloads running
inside VMs. Since virtually all cloud workloads are currently
running in VMs, VM performance is a crucial component
of overall cloud performance. Once a hypervisor has added
overhead, no higher layer can remove it. Such overheads then
become a pervasive tax on cloud workload performance. There
have been many studies showing how VM execution compares
to native execution [30, 33] and such studies have been a
motivating factor in generally improving the quality of VM
technology [25, 31].

Container-based virtualization presents an interesting al-
ternative to virtual machines in the cloud [46]. Virtual Private
Server providers, which may be viewed as a precursor to cloud
computing, have used containers for over a decade but many
of them switched to VMs to provide more consistent perfor-
mance. Although the concepts underlying containers such as
namespaces are well understood [34], container technology
languished until the desire for rapid deployment led PaaS
providers to adopt and standardize it, leading to a renaissance
in the use of containers to provide isolation and resource con-
trol. Linux is the preferred operating system for the cloud due
to its zero price, large ecosystem, good hardware support, good
performance, and reliability. The kernel namespaces feature
needed to implement containers in Linux has only become
mature in the last few years since it was first discussed [17].

Within the last two years, Docker [45] has emerged as a
standard runtime, image format, and build system for Linux
containers.

This paper looks at two different ways of achieving re-
source control today, viz., containers and virtual machines
and compares the performance of a set of workloads in both
environments to that of natively executing the workload on
hardware. In addition to a set of benchmarks that stress
different aspects such as compute, memory bandwidth, mem-
ory latency, network bandwidth, and I/O bandwidth, we also
explore the performance of two real applications, viz., Redis
and MySQL on the different environments.

Our goal is to isolate and understand the overhead intro-
duced by virtual machines (specifically KVM) and containers
(specifically Docker) relative to non-virtualized Linux. We
expect other hypervisors such as Xen, VMware ESX, and
Microsoft Hyper-V to provide similar performance to KVM
given that they use the same hardware acceleration features.
Likewise, other container tools should have equal performance
to Docker when they use the same mechanisms. We do not
evaluate the case of containers running inside VMs or VMs
running inside containers because we consider such double
virtualization to be redundant (at least from a performance
perspective). The fact that Linux can host both VMs and
containers creates the opportunity for an apples-to-apples com-
parison between the two technologies with fewer confounding
variables than many previous comparisons.

We make the following contributions:

• We provide an up-to-date comparison of native, con-
tainer, and virtual machine environments using recent
hardware and software across a cross-section of inter-
esting benchmarks and workloads that are relevant to
the cloud.

• We identify the primary performance impact of current
virtualization options for HPC and server workloads.

• We elaborate on a number of non-obvious practical
issues that affect virtualization performance.

• We show that containers are viable even at the scale
of an entire server with minimal performance impact.

The rest of the paper is organized as follows. Section II de-
scribes Docker and KVM, providing necessary background to
understanding the remainder of the paper. Section III describes
and evaluates different workloads on the three environments.
We review related work in Section IV, and finally, Section V
concludes the paper.

Source: Felter et al. (2014). An updated performance comparison of virtual machines and linux containers.

Source: http://cdn.meme.am/instances/53646903.jpg

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
21

Container Intro

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
22

• 2000, BSD
• Expanded (much older)
chroot to isolate
processes

Jails

• 2002, Linux
• initial work on mount

namespace
• 2006 additional

namespaces

Namespaces • 2005, Linux
• Linux Kernel Patches
• part of functionality now

in namespaces

Vserver +
OpenVZ

• 2005, Solaris
• x86, SPARC
• Later „branded zones“

Zones • 2006, Linux
• „process groups“

renamed to „control
groups“

• limit resource usage of
a collection of processes

Cgroups

• 2008, Linux
• Combination of cgroups

+ namespaces

LXC • 2013, Linux
• Initially based on LXC
• Switched to libcontainer

Docker

• 2015, Linux
• Started as an

alternative to Docker

CoreOS/rkt

Hypervisor-based virtualization
1999 VMware Workstation 1.0
2001 ESX 1.0 & GSX 1.0
2003 Xen 1st public release
2006 KVM (2.6.10)

Evolution of OS-level virtualization

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
23

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
24

Bestehende Technologie
die bereits im Kernel ist/war

Source: https://www.youtube.com/watch?v=sK5i-N34im8 &&
https://de.slideshare.net/jpetazzo/cgroups-namespaces-and-beyond-what-are-containers-made-from-dockercon-europe-2015

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
26

Container = Namespaces + cgroups

▶ Beides Kernelfeatures
– Namespaces: einige Subsysteme ns-aware – Illusion isolierter Betrieb
– Cgroups: einige Ressourcen kontrollierbar – Limitierung Ressourcenverbrauch

Namespace Description
pid Process ID

net Network Interfaces, Routing
Tables, …

ipc Semaphores, Shared Memory,
Message Queues

mnt Root and Filesystem Mounts

uts Hostname, Domainname

user UserID and GroupID

Controller Description
blkio Access to block devices

cpu CPU time

devices Device access

memory Memory usage

net_cls Packet classification

net_prio Packet priority

Container Runtimes

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
28

Docker

Source: http://cdn.meme.am/instances/500x/59600465.jpg

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
30

What is Docker?

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
31

It depends...
on the time

Engine -> Company -> Platform

Source: https://www.docker.com/what-docker

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
32

Docker Hub
Docker Toolbox

Docker Compose
Docker Swarm

Docker Machine
Docker Universal Control Plane

Docker Trusted Registry
Docker Cloud

Docker Enterprise Edition
Docker „XYZ“ ;)

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
33

Terminologie
+ Kernkomponenten

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
34

Begrifflichkeiten – Core + Workflow Components
Component Description

Host (Linux) System with Docker Daemon

Daemon The engine, running on the host

Client CLI for interacting with Daemon

Component Description
Image contains application + environment

Container created from image - start, stop, …

Registry „App Store“ for images
Public + private repository possible

Dockerfile used for automating image build

Source: https://blog.docker.com/2016/04/docker-engine-1-11-runc/

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
36

runC / containerd
Docker >= 1.11 is based on runC and containerd
Effort to break Docker into smaller reusable parts

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
37

▶ runC - low-level container runtime / executor
– CLI tool for spawning + running containers
– Implementation of the OCI specification
– Built on Libcontainer (performs the container isolation primitives for the OS)
– Can be integrated into other systems – does not require a daemon
– But not really end-user friendly

▶ Given to the OCI (Open Container Initiative)
– Founded 2015 by Docker and others. 40+ members
– Aims to establish common standards and avoid potential fragmentation
– Two specifications for interoperability: Runtime + Image (Both supported)

runC

Links: https://github.com/opencontainers/runc && https://opensource.com/life/16/8/runc-little-container-engine-could &&
https://www.opencontainers.org/

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
38

containerd

Links: https://github.com/docker/containerd/ && https://www.youtube.com/watch?v=VWuHWfEB6ro && https://www.cncf.io/

▶ Containerd - daemon to control runC
– Sticker says: „small, stable, rock-solid container runtime“

– Can be updated without terminating containers
– Can manage the complete container lifecycle of its host system

• image transfer + storage, container execution + supervision, ...
– Designed to be embedded into a larger system, not directly for end-users

▶ Donated to the CNCF (Cloud Native Computing Foundation) – as is rkt ;)
– Linux Foundation project to accelerate adoption of microservices, containers

and cloud native apps.

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
39

Docker-Alternativen

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
40

Rocket / rkt
Docker is „fundamentally flawed“

- CoreOS CEO Alex Polvi

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
41

▶ Not a Docker fork
– Started by the disappointed CoreOS team as Docker moved away from a

simple building block to a plattform

▶ Mission: build a top-notch systemd oriented container runtime for Linux
– Not attempting to become a wider containerization platform
– Reached 1.0 in 02/2016 – production ready? Current: v1.27.0

▶ Features:
– Sticker says „Secure by default“, besides daemon-less including

• Support for executing pods with KVM hypervisor
• Shared Features: SELinux support, signature validation (as in Docker)

– Can run Docker images (-> appc, Docker, OCI)

Key facts - rkt

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
42

▶ Very Linux oriented
– No Windows / MacOS „version“

• using Docker easier vor Devs with tools like “Docker for Mac/Windows“
– Process model is more Linux-like than Docker‘s

▶ 3rd party support:
– Images: worse than Docker, but can run Docker images
– Schedulers (Kubernetes, ...): good

▶ Also project at the CNCF
– Merger unlikely, would rather lead to a third option

• (containerd &OCI compatible runtime + runc)

Key facts II - rkt Stage 1 Flavors
fly: a simple chroot only environment.
systemd/nspawn: a cgroup/namespace based isolation
environment using systemd, and systemd-nspawn.
kvm: a fully isolated kvm environment.

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
43

LXC/LXD
"Containers which offer an environment as close to possible as the
one you'd get from a VM but without the overhead that comes with

running a separate kernel and simulating all the hardware.“
– LXC Documentation

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
44

▶ Idea for Linux Containers (LXC) started with Linux Vservers

▶ Developers from IBM started the LXC project in 2008, currently led by Ubuntu

▶ Had support for user namespaces ages before Docker ;)

▶ Often considered ‚more complicated to use“

▶ Concept much closer to VMs than Docker
– Operating System containerization vs Application containerization
– Less living the „one application per container“ mantra

Key facts - LXC

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
45

▶ LXC „hypervisor“, originally developed by Ubuntu

▶ Offers integration with OpenStack

▶ Manages containers through a REST APIs

▶ Like “Docker for LXC", with similar command line flags, support for image
repositories and other container management features

Key facts - LXD

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
46

systemd-nspawn

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
47

▶ Limited – but might be sufficient in some cases
– "namespace spawn" - it only handles process isolation
– no resource isolation like memory, CPU, etc.

▶ Does not download or verify images by itself

▶ Less enduser-friendly than rkt or Docker
– More „like using runc with less features“
– No „manager“ like containerd

Key facts - systemd-nspawn

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
48

Alternatives for HPC

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
49

Shifter

Source: Canon, R. S., & Jacobsen, D. (2016). Shifter : Containers for HPC. Cray User Group 2016. |
http://www.nersc.gov/research-and-development/user-defined-images/

Shifter: Containers for HPC
Richard Shane Canon

Technology Integration Group
NERSC, Lawrence Berkeley National Laboratory

Berkeley, USA
Email: scanon@lbl.gov

Doug Jacobsen
Computational Systems Group

NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA

Email: dmjacobsen.gov

Abstract—Container-based computed is rapidly changing the
way software is developed, tested, and deployed. This paper
builds on previously presented work on a prototype framework
for running containers on HPC platforms. We will present a de-
tailed overview of the design and implementation of Shifter, which
in partnership with Cray has extended on the early prototype
concepts and is now in production at NERSC. Shifter enables end
users to execute containers using images constructed from various
methods including the popular Docker-based ecosystem. We will
discuss some of the improvements over the initial prototype
including an improved image manager, integration with SLURM,
integration with the burst buffer, and user controllable volume
mounts. In addition, we will discuss lessons learned, performance
results, and real-world use cases of Shifter in action. We will also
discuss the potential role of containers in scientific and technical
computing including how they complement the scientific process.
We will conclude with a discussion about the future directions
of Shifter.

Keywords-Docker; User Defined Images; Shifter; containers;
HPC systems

I. INTRODUCTION

Linux containers are poised to transform how developers
deliver software and have the potential to dramatically improve
scientific computing. Containers have gained rapid adoption
in the commercial and web space, but its adoption in the
technical computing and High-Performance Computing (HPC)
space has been hampered. In order to unlock the potential of
Containers for this space, we have developed Shifter. Shifter
aims to deliver the flexibility and productivity of container
technology like Docker [1], but in a manner that aligns with
the architectural and security constraints that are typical of
most HPC centers and other shared resource providers. Shifter
builds on lessons learned and previous work such as CHOS
[2], MyDock, and User Defined Images [3]. In this paper,
we will provide some brief background on containers. Next
we will provided an overview of the Shifter architecture
and details about its implementation and some of the design
choices. We will present benchmark results that illustrate how
Shifter can improve performance for some applications. We
will conclude with a general discussion of how Shifter includ-
ing how it can help scientists be more productive including
a number of examples where Shifter has already made an
impact.

II. BACKGROUND

Linux containers have gained rapid adoption across the
computing space. This revolution has been led by Docker
and its growing ecosystem of tools such as Swarm, Compose,
Registry, etc. Containers provide much of the flexibility of
virtual machines but with much less overhead [4]. While
containers have seen the greatest adoption in the enterprise
and web space, the scientific community has also recognized
the value of containers [5]. Containers have promise to the
scientific community for a several reasons.

• Container simplify packaging applications since all of the
dependencies and versions can be easily maintained.

• Containers promote transparency since input files like
a Dockerfile effectively document how to construct the
environment for an application or workflow.

• Containers promote collaboration since containers can be
easily shared through repositories like Dockerhub.

• Containers aid in reproducibility, since containers poten-
tially be referenced in publications making it easy for
other scientists to replicate results.

However, using standard Docker in many environments
especially HPC centers is impractical for a number of rea-
sons. The barriers include security, kernel and architectural
constraints, scalability issues, and integration with resource
managers and shared resources such as file systems. We will
briefly discuss some of these barriers.

Security: The security barriers are primarily due to
Docker’s lack of fine-grain ACLs and that Docker processes
are typically executed as root. Docker’s current security model
is an all-or-nothing approach. If a user has permissions to
run Docker then they effectively have root privileges on the
host system. For example, a user with Docker access on a
system can volume mount the /etc directory and modify
the configuration of the host system. Newer features like user
namespace may help, but many of the security issues still exist.

Kernel and Architectural Constraints: HPC system are
typically optimized for specific workloads such as MPI ap-
plications and have special OS requirements to support fast
interconnects and parallel file systems. These attributes often
make it difficult to run Docker without some modifications.
For example, many HPC systems lack a local disk. This makes
it difficult although not impossible to run Docker “out of the
box”. Furthermore, HPC systems typically use older kernel

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
51

Singularity

Source: Kurtzer, G. M., Sochat, V., Bauer, M. W., Favre, T., Capota, M., & Chakravarty, M. (2017). Singularity: Scientific containers
for mobility of compute. Plos One, 12(5), e0177459. | http://singularity.lbl.gov

RESEARCH ARTICLE

Singularity: Scientific containers for mobility
of compute
Gregory M. Kurtzer1, Vanessa Sochat2*, Michael W. Bauer1,3,4

1 High Performance Computing Services, Lawrence Berkeley National Lab, Berkeley, CA, United States of
America, 2 Stanford Research Computing Center and School of Medicine, Stanford University, Stanford, CA,
United States of America, 3 Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI, United States of America, 4 Experimental Systems, GSI Helmholtzzentrum für
Schwerionenforschung, Darmstadt, Germany

* vsochat@stanford.edu

Abstract

Here we present Singularity, software developed to bring containers and reproducibility to

scientific computing. Using Singularity containers, developers can work in reproducible envi-

ronments of their choosing and design, and these complete environments can easily be cop-

ied and executed on other platforms. Singularity is an open source initiative that harnesses

the expertise of system and software engineers and researchers alike, and integrates seam-

lessly into common workflows for both of these groups. As its primary use case, Singularity

brings mobility of computing to both users and HPC centers, providing a secure means to

capture and distribute software and compute environments. This ability to create and deploy

reproducible environments across these centers, a previously unmet need, makes Singular-

ity a game changing development for computational science.

Introduction

The landscape of scientific computing is fluid. Over the past decade and a half, virtualization
has gone from an engineering toy to a global infrastructure necessity, and the evolution of
related technologies has thus flourished. The currency of files and folders has changed to appli-
cations and operating systems. The business of Supercomputing Centers has been to offer scal-
able computational resources to a set of users associated with an institution or group [1]. With
this scale came the challenge of version control to provide users with not just up-to-date soft-
ware, but multiple versions of it. Software modules [2, 3], virtual environments [4, 5], along
with intelligently organized file systems [6] and permissions [7] were essential developments
to give users control and reproducibility of work. On the administrative side, automated builds
and server configuration [8, 9] have made maintenance of these large high-performance com-
puting (HPC) clusters possible. Job schedulers such as SLURM [10] or SGE [11] are the meta-
phorical governors to control these custom analyses at scale, and are the primary means of
relay between administrators and users. The user requires access to consume resources, and
the administrator wants to make sure that the user has the tools and support to make the most
efficient use of them.

PLOS ONE | https://doi.org/10.1371/journal.pone.0177459 May 11, 2017 1 / 20

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Kurtzer GM, Sochat V, Bauer MW (2017)
Singularity: Scientific containers for mobility
of compute. PLoS ONE 12(5): e0177459. https://
doi.org/10.1371/journal.pone.0177459

Editor: Attila Gursoy, Koc Universitesi, TURKEY

Received: December 20, 2016

Accepted: April 27, 2017

Published: May 11, 2017

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced,
distributed, transmitted, modified, built upon, or
otherwise used by anyone for any lawful purpose.
The work is made available under the Creative
Commons CC0 public domain dedication.

Data Availability Statement: The source code for
Singularity is available at https://github.com/
singularityware/singularity, and complete
documentation at http://singularity.lbl.gov/.

Funding: Author VS is supported by Stanford
Research Computing (IT) and the Stanford School
of Medicine, and author MWB is supported by the
Frankfurt Institute of Advanced Studies (FIAS).
Author GMK is an employee of Lawrence Berkeley
National Lab, the Department of Energy, and UC
Regents. This manuscript has been authored by an
author (GMK) at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-
05CH11231 with the U.S. Department of Energy.

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
53

bdocker and udocker

Source: GOMES, J., ALVES, L., SEVILLA, J., DAVID, M., PINA, J., & MARTINS, J. (2017). bdocker and udocker - two complementary
approaches for execution of containers in batch systems. EGI Conference 2017 and INDIGO Summit 2017

The interest on Linux Containers, and more specifically on projects like Docker, have been constantly
growing in IT communities for the past few years. The scientific computing community is no
exception. The promise of deploying and sharing applications in - often pre-built - isolated sandboxes
without all necessary overhead imposed by virtualization techniques is highly attractive. This is
especially the case for scientific computing systems. These systems, very sensitive to software stack
changes and on security matters, must serve demanding users working on very specific runtime
environments, with di�erent – often incompatible - software stacks. This poster presents bdocker
and udocker, two complementary solutions to address the need for container support on batch
system environments. bdocker, aims to enable containers’ execution and management on batch
systems by implementing a client-server architecture that cooperates with the cluster’s resource
manager running two daemons, one on the frontend and one other on each worker node. While the
frontend daemon deals with job submission, user authorization and accounting recording, at the
worker nodes, bdocker daemon acts as a wrapper around conventional Docker installation, ensuring
this way controlled container execution, accounting and job clean up. The second solution, udocker,
provides a user-space lightweight virtualization environment to execute application containers across
systems. All activities within a udocker container are limited to the permissions of the ‘account’
under which it is launched. Therefore, udocker is mostly suitable for user application execution
allowing access to resources including specialized hardware (such as GPUs) and the host network
stack. The current execution engine provides execution of the Docker containers with metadata
interpretation, and provisioning of a user space execution environment based on PROOT which
provides a chroot like environment. Additionally root privileged emulation is supported enabling the
execution of several management operations, including software installation within the containers.

GOMES, Jorge (LIP); ALVES, Luis (LIP)

SEVILLA, Jorge (?); DAVID, Mario (LIP); PINA, Joao (LIP); MARTINS, João
(LIP)

GOMES, Jorge (LIP); ALVES, Luis (LIP)

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
55

Runtime Reason
Docker You want a platform, if needed with support

You want one solution for different use cases
Docker lowlevel You want to integrate Docker into something „bigger“
Rkt You want a general purpose alternative to Docker

You get confused by Docker
LXC You want system-, not application-container
systemd-nspawn You want Docker lowlevel with much lesser features
Shifter Your other computer is a Cray and you want

something like containers
Singularity You do HPC and only HPC

Decision helper

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
56

▶ Containers are based on existing Linux kernel features

▶ Have many benefits for shipping software

▶ Several viable options exists for containerizing workloads
– rkt now provides a viable alternative to Docker

• Linux centric
• Strong competitor keeps monopolists sharp :)

– Breaking Docker into smaller reusable parts makes sense
– LXC for containerizing OS instead of application

▶ But the war is won.

Summary

„Containers do not contain"

"Some people make the mistake of
thinking of containers as a better and
faster way of running virtual
machines.
From a security point of view,
containers are much weaker."

Dan Walsh,
SELinux architect

"Virtual Machines might be more
secure today, but containers are
definitely catching up."

Jerome Petazzoni,
Senior Software Engineer at Docker

Eigentlich...

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
61

Schlechter Ruf

Source: https://github.com/gabrtv/shocker

Sources: https://blog.jessfraz.com/posts/docker-containers-on-the-desktop.html | https://news.ycombinator.com/item?id=9086751

Source: https://xkcd.com/1988/

Fully automated build process

Containers - Vulnerability Analysis
Theo Combe

Nokia
Bell Labs France

Nozay, France
Email: theo-nokia@sutell.fr

Antony Martin
Nokia

Bell Labs France
Nozay, France

Email: antony.martin@nokia.com

Roberto Di Pietro
Nokia

Bell Labs France
Nozay, France

Email: roberto.di-pietro@nokia.com

Abstract—Cloud based infrastructures have typically lever-
aged virtualization. However, the need for always shorter
development cycles, continuous delivery and cost savings in
infrastructures, led to the rise of containers. Indeed, containers
provide faster deployment than virtual machines and near-native
performance. In this work, we study the security implications of
the use of containers in typical use-cases, through a vulnerability-
oriented analysis of the Docker ecosystem. Indeed, among all
container solutions, Docker is currently leading the market. More
than a container solution, it is a complete packaging and software
delivery tool. In particular, we provide several contributions
to the analysis of the containers security ecosystem: using a
top-down approach, we point out vulnerabilities —present by
design or driven by some realistic use-cases— in the different
components of the Docker environment. Moreover, we detail real
world scenarios where these vulnerabilities could be exploited,
propose possible fixes, and, finally discuss the adoption of Docker
by PaaS providers.

KEYWORDS

Security, Containers, Docker, Virtual Machines, DevOps,
Orchestration.

I. INTRODUCTION

Virtualization-rooted cloud computing is a mature market.
There are both commercial and Open Source driven solutions.
For the former ones, one may mention Amazon’s Elastic
Compute Cloud (EC2) [1], Google Compute Engine [2] [3],
VMware’s vCloud Air, Microsoft’s Azure, while for the latter
ones examples include OpenStack combined with virtualiza-
tion technologies such as KVM or Xen.

Recent developments have set the focus on two main
directions. First, the acceleration of the development cycle
(agile methods and devops) and the increase in complexity of
the application stack (mostly web services and their frame-
works) trigger the need for a fast, easy-to-use way of pushing
code into production. Further, market pressure leads to the
densification of applications on servers. This means running
more applications per physical machine, which can only be
achieved by reducing the infrastructure overhead.

In this context, new lightweight approaches such as con-
tainers or unikernels [4] become increasingly popular, being
more flexible and more resource-efficient. Containers achieve
their goal of efficiency by reducing the software overhead
imposed by virtual machines (VM) [5] [6] [7], thanks to a
tighter integration of guest applications into the host operating
system (OS). However, this tighter integration also increases
the attack surface, raising security concerns.

The existing work on container security [8] [9] [10] [11]
focuses mainly on the relationship between the host and
the container. This is absolutely necessary because, while
virtualization exposes well-defined resources to the guest
system (virtual hardware resources), containers expose (with
restrictions) the host’s resources (e.g. IPC / filesystem) to the
applications. However, the latter feature represents a threat for
confidentiality and availability of applications running on the
same host.

Containers are now part of a complex ecosystem - from
container to various repositories and orchestrators - with a
high level of automation. In particular, container solutions
embed automated deployment chains [12] meant to speed
up code deployment processes. These deployment chains are
often composed of third parties elements, running on different
platforms from different providers, raising concerns about
code integrity. This can introduce multiple vulnerabilities that
an adversary can exploit to penetrate the system. To the best
of our knowledge, while deployment chains are fundamental
for the adoption of containers, the security of their ecosystem
has not been fully investigated yet.

The vulnerabilities we consider are classified, relatively
to a hosting production system, from the most remote ones
to the most local ones, using Docker as a case study. We
actually focus on Docker’s ecosystem for three reasons. First,
Docker successfully became the reference on the market of
container and associated DevOps ecosystem. In particular,
92% of surveyed people by ClusterHQ and DevOps.com [13]
are using or planning to use Docker in a container solution.
Second, security is the first barrier to container adoption
in production environment [13]. Finally, Docker is already
running in some environments which enable experiments and
exploring the practicality of some attacks.

In this paper, we provide several contributions. First,
we make a thorough list of security issues related to the
Docker ecosystem, and run some experiments on both local
(host-related) and remote (deployment-related) aspects of this
ecosystem. Second, we show that the design of this ecosystem
triggers behaviours (captured in three use-cases) that lower
security when compared to the adoption of a VM based
solution, such as automated deployment of untrusted code.
This is the consequence of both the close integration of
containers into the host system and of the incentive to scatter
the deployment pipeline at multiple cloud providers. Finally,
we argument on the fact that these use-cases trigger and

Attacking a Big Data
Developer
Dr. Olaf Flebbe
of ät oflebbe.de

ApacheCon Bigdata Europe
16.Nov.2016 Seville

Source: Combe et al., Containers - Vulnerability Analysis. +
http://events.linuxfoundation.org/sites/events/files/slides/AttackingBigDataDeveloper_0.pdf

Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins

?

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
67

Inzwischen...

Security on many layers...

↑Provision Mode | Operation Mode ↓

Source: VHPC16: Gantikow et al.
Providing Security in Container-based HPC Runtime Environments

Image Security

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
70

Motivation

Number of pulls
on Docker Hub

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
72

„Using Docker is like
downloading software of unknown origin
from the internet and running it as root“

Quelle: Internet ;)

Why so serious?

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/

ORIGINAL PHOTO (CC) BY IAN KLUFT

CVE-2015-0235
aka

GHOST

“GHOST is a buffer overflow bug affecting the gethostbyname() and
gethostbyname2() function calls in the glibc library. This vulnerability allows

a remote attacker that is able to make an application call to either of these
functions to execute arbitrary code.”

66.6 %
of analyzed images on Quay.io

Coincidence? I think not !
Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/

CVE-2014-0160
aka

Heartbleed

“The TLS and DTLS implementations in OpenSSL do not properly handle
Heartbeat Extension packets, which allows remote attackers to obtain

sensitive information from process memory via crafted packets that trigger
a buffer over-read.”

ORIGINAL PHOTO (CC) BY IAN KLUFT

80 %
of analyzed images on Quay.io

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/

Source: https://memecrunch.com/meme/BMQAF/how-could-this-happen-to-me

Most containers built on same base
layers

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/

Source: https://microbadger.com/images/buildpack-deps

Planned parenthood

python (latest)
FROM buildpack-deps:jessie

ENV PATH /usr/local/bin:$PATH
[…]

buildpack-deps:jessie
FROM buildpack-deps:jessie-scm
RUN set -ex; apt-get update; \

[…]

buildpack-deps:jessie-scm
FROM buildpack-deps:jessie-curl

RUN apt-get update && apt-get install -y \
[…]

buildpack-deps:jessie-curl
FROM debian:jessie

RUN apt-get update && apt-get install -y \
[…]

debian:jessie
FROM scratch

ADD rootfs.tar.xz
CMD ["bash"]

• Images usually not started from scratch
• Are derived from one another
• Each image is independent
• Convenient
• Short “time to market”

• Errors propagate from parent to child

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
80

The Good

Configuration

Application

OpenMP

MPI

Compiler

Linux
”Flavor”

OpenFoam v3.0+

OpenMP 3.0

OpenMPI

GCC 4.7

CentOS

OpenMP 4.0

MPICH

GCC 4.8

Debian

OpenFoam v1706

OpenMP 4.5

MPICHv2

GCC 4.9

Ubuntu

Configuration 1 Configuration 2 Configuration n

OpenFoam v1612+

Mix and Match (3x3x3x3x3xn)

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
82

The Bad

Why so serious?

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
84

What to do about it?

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
85

▶ Tools and Technologies
– Official Repositories (-> *)
– Trusted Registries (on premises)
– Content Trust (image signing + verification)
– Docker Store (new, fully „compliant, commercially supported software“)
– Private Registry

▶ Recommendations
– Build, sign and maintain your own (base) images
– Use a private repository/registry with „curated“ images
– When relying on DockerHub: limit to official repositories
– Update your images once updated base image becomes available

Image Provenance + Distribution

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
86

Image Content Scanner
Clair

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
87

▶ From the CoreOS-Projekt, OpenSource – Apache 2.0 License

▶ Integrated in Quay.io registry
– Checks each new image
– Checks existing images for new found vulnerabilities

▶ Alternatives (commercial):
– Project Nautilus aka „Docker Security Scanning“
– OpenShift: Red Hat CloudForms with OpenSCAP Image Scans
– IBM Bluemix (Vulnerability Advisor?)

– Concept similar – differ in features and integeration

Clair

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
88

How it works

▶ Procedure – for all layer in one image:
– Check with vendor for reported CVEs

▶ Disadvantage:
– Does not work with manually installed SW
– No “snake oil“ (*), SW licenses, „Compliance“,

...
* = DHBW Student PoC as Thesis

Statische Schwachstellenanalyse von
Images für virtualisierte Umgebungen

Bachelorarbeit

T2-3300

der Fachrichtung B. Eng. Informationstechnik an der DHBW Stuttgart,
Baden-Württemberg

von

Josef Plendl

04.09.2017

Bearbeitungszeitraum 12.06.2017 bis 04.09.2017
Matrikelnummer, Kurs 3051591, TINF14IN
Ausbildungsfirma science + computing ag, Tübingen
Betreuer Dipl. Informatiker (FH) Holger Gantikow
Gutachter Prof. Dr. Karl Friedrich Gebhardt

Zusammenfassung

In der vorliegenden Arbeit wird sich mit der statischen Schwachstellenanalyse von
Images für virtualisierte Umgebungen befasst. Dabei wird der Prozess der Analyse und
dafür entwickelte Software thematisiert, um einen Möglichst umfassenden Schutz vor
potentiell gefährlichen Images zu ermöglichen. Hier zeigt die aktuelle Gefahrenlage,
dass nicht nur vor der Erstinbetriebnahme getestet werden muss, sondern auch laufend
neue Risiken entdeckt werden. Für ein besseres Verständnis werden die Grundlagen
der Virtualisierung erörtert und die verschiedenen Formen vorgestellt. Aufgrund der
zentralen Bedeutung der Schwachstellenanalyse, werden ebenso die Grundlagen des
Managements von Sicherheitslücken untersucht. Da die Containervirtualisierung gera-
de stark an Verbreitung gewinnt, liegt der Fokus der Arbeit auf diesem Gebiet. Hier
spielen Image- oder Schwachstellenscanner eine immer wichtigere Rolle, weshalb diese
näher betrachtet werden. Neben einer Vorstellung wichtiger Produkte, wird anhand
eines ausgewählten Scanners die Funktionsweise sowie der Aufbau detailliert unter-
sucht. Die Darlegung weiterer Untersuchungskriterien bei der statischen Analyse zeigt
zusätzliches Gefahrenpotential, weshalb eine exemplarische Erweiterung des ausgewähl-
ten Produkts die Anpassungsfähigkeit an neu Risiken beweist. Um den Nutzen der
Schwachstellenanalyse zu erhöhen, werden darüber hinaus mögliche Einsatzszenarien
und Maßnahmen diskutiert. Denn der Scanner liefert bei unpassender Verwendung oder
fehlenden Konsequenzen aus den Ergebnissen keinen Mehrwert.

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
90

Summertime surveys...

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
91

Vulnerabilities over time
Top10 Official Images

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
92

▶ Objective: Develop understanding on:
– How bad is it?
– How frequently updated?
– Any patterns recognizable?

▶ Setting:
– 3 Weeks {02,09,16}.09.17
– Official Images (from official repositories) only
– Top 10 Images – (one image was interchanged for the 11th)
– Images tagged as “latest”
– Clair as vulnerability Scanner (CVE from Mitre, Distribution)

--verbose

Top 10 (+1) as Sample

Source: https://hub.docker.com/explore/

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
94

Vulnerabilities by image

Week 1 – 02.08.2017
Image Unknown Neglibible Low Medium High Total

nginx 4 25 3 13 4 49
redis 3 21 4 10 7 45
busybox 0 0 0 0 0 0
alpine 0 0 0 0 0 0
registry 0 0 0 0 0 0
mysql 3 24 4 10 7 48
mongo 3 22 4 10 7 46
elasticsearch 3 22 1 6 5 37
postgres 6 30 6 21 10 73
logstash 3 22 1 6 5 37
Average 2,5 16,6 2,3 7,6 4,5 33,5

Week 2 – 09.08.2017
Image Unknown Neglibible Low Medium High Total

nginx 4 25 3 16 (+3) 4 52 (+3)
redis 4 (+1) 21 4 11 (+1) 7 47 (+2)
busybox 0 0 0 0 0 0
alpine 0 0 0 0 0 0
registry 0 0 0 0 0 0
mysql 4 (+1) 24 4 11 (+1) 7 50 (+2)
mongo 4 (+1) 23 (+1) 4 11 (+1) 7 49 (+3)
elasticsearch 5 (+2) 22 1 8 (+2) 5 41 (+4)
postgres 7 (+1) 30 6 22 (+1) 10 75 (+2)
logstash 5 (+2) 22 1 8 (+2) 5 41 (+4)
Average 3,3 (+) 16,7 (+) 2,3 8,7 (+1) 4,5 35,5 (+2)

Not a single (-X)

Week 3 – 16.08.2017
Image Unknown Neglibible Low Medium High Total

nginx 4 26 (+1) 3 15 (-1) 5 (+1) 53 (+1)
redis 2 (-2) 21 6 (+2) 11 8 (+1) 48
busybox 0 0 0 0 0 0
alpine 0 0 0 0 0 0
registry 0 0 0 0 0 0
mysql 2 (-2) 24 6 (+2) 11 8 (+1) 51 (+1)
mongo 2 (-2) 23 6 (+2) 11 8 (+1) 50 (+1)
elasticsearch 9 (+4) 21 (-1) 1 8 6 (+1) 45 (+4)
postgres 5 (-2) 30 8 (+2) 23 (+1) 11 (+1) 77 (+2)
logstash 9 (+4) 21 (-1) 1 8 6 (+1) 45 (+4)
Average 3,3 16,6 (-) 3,1 (+) 8,7 5,2 (+) 36,9 (+1)

Some (-X)

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
98

Vulenrabilities by week and severity

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
99

▶ Official images are not necessarily free from vulnerabilities
– Some carry severe vulnerabilities, only few free from vulnerabilities

▶ Images are updated
– Over the course of the 3 weeks 40% of the images were updated once
– 30% were free from vulnerabilities

▶ Decrease in vulnerabilities might be related to reclassification
– See –n -> +n

▶ The number of vulnerabilities is related to the image size
▶ Vulnerabilities propagate from parent image to child image

Interpretation

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
100

Exploring Official Images
a bit further...

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
101

▶ Objectives: Develop understanding in all (n=144) Official Images (17.09.17)
▶ Base/parent relationship

– What are the most common used parent images?
– Are there any trends in terms of parent image popularity?
– Are there images available derived from different parent images?
– Are the images as seldom updated as the initial survey implies?

▶ Images general
– Are there images that are deprecated?
– Minimum, average and maximum size of images?

▶ Layers
– Minimum, average and maximum amount of layers?
– Explanation + further implications?

--verbose

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
102

Base / Parent images

Reminder: Python ”from scratch”

python (latest)
FROM buildpack-deps:jessie

ENV PATH /usr/local/bin:$PATH
[…]

buildpack-deps:jessie
FROM buildpack-deps:jessie-scm
RUN set -ex; apt-get update; \

[…]

buildpack-deps:jessie-scm
FROM buildpack-deps:jessie-curl

RUN apt-get update && apt-get install -y \
[…]

buildpack-deps:jessie-curl
FROM debian:jessie

RUN apt-get update && apt-get install -y \
[…]

debian:jessie
FROM scratch

ADD rootfs.tar.xz
CMD ["bash"]

• Images usually not started from scratch
• Images are derived from one another
• Each image is independent

• Each image consists of several layers
• FROM, RUN, ADD, CMD, …

Commands in Dockerfile
• Layers are stacked

• Errors propagate from parent to child
• Update(parent) && Update(child)

• Essential: Monitor parent for updates
• Better: Monitor family tree for

inconsistencies

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
104

Image Parenthood - Distribution

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
105

▶ Only 23 started from scratch

▶ Debian (28), Alpine, Ubuntu most popular base images
– Debian very important as indirect base (additional 53 images):

• buildpack-deps + programming languages based on debian

▶ Alpine growing in popularity (due to small foot print: Base 2MB vs Debian 43MB)
– 9 directly based on Alpine + additional 38 offer alternative build on Alpine

▶ 15/144 images deprecated
– Either no update (90-704 days) or functionality integrated in another image

Interpretation

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
106

Image Size

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
107

Image Size - Boxplot

• Sample size n=117 of N=144

• Image size ranges from 1MB to 1200MB

• Most images rather small in size:
• Median: 138MB, Average: 184MB

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
108

Image Size - Distribution

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
109

▶ Images rather small compared to VMs of same functionality
– Peak 1-50MB, most images <=200MB

▶ Images vary in size significantly
– Min 1MB, Mdn 138MB, Mean 184MB, Max 1200MB

▶ Size seems usually reasonable (i.e. Debian base + JDK)

▶ More size results in more vulnerabilities (due to additional packages)

▶ Beware of different sized images with the same “sticker”
– Especially if community image. Might be a trap. Example follows

Interpretation

Beware! {"user": "docker123321", "name": "tomcat", "namespace":
"docker123321", "repository_type": "image", "status": 1,
"description": "", "is_private": false, "is_automated": false,
"can_edit": false, "star_count": 0, "pull_count": 281646,
"last_updated": "2017-07-25T04:56:46.241594Z", "build_on_cloud":
null, "has_starred": false, "full_description": null,
"affiliation": null, "permissions": {"read": true, "write":
false, "admin": false}}
https://hub.docker.com/v2/repositories/docker123321/tomcat/ 03.10.17

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
111

Layer

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
112

Layer Count - Distribution

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
113

▶ Action (i.e. add package) in buildfile results in additional layer

▶ Highest peak in 10-15 layer group, 74% of the images <=25 layer

▶ Lower number might imply simplicity, but could also be “cheating”.
– FROM scratch; ADD rootfs.tar.xz

– Rootfs could contain anything ;)
– Also not necessarily related to size

▶ High number of layers might indicate need for optimization of buildprocess

Interpretation

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
114

Update Frequency

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
115

▶ For each repository the ”last pushed” information was collected (on 17.09.17)

▶ The statistical data shows
– Most recent updates: 2 days ago
– Oldest updates (to deprecated images) >700 days
– Median 4 days

▶ Manually verified: all non-deprecated repos received updates <=9 days ago
▶ Manually verified: even some deprecated repos updated!

▶ Attention: last update to repository != update to image (!!!)

Up to date?

Age (days)
Min 2
Median 4
Average 32
Max 704

Refers to repo

Last push information does not
refer to all images – updated once
any of the images is updated

Update frequency does not
contradict initial survey.
Initial survey focused on
Repository.image.hasTag(Latest)

Individual image has to be checked!

Not all images might need updates

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
117

{Min,Mdn,Avg,Max}

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
118

Statistical Values

Size (MB) Age (days) Image Layers

Min 1 2 2

Lower 58 3 11

Median 138 4 17

Average 184 32 19

Upper 253 4 26

Max 1.200 704 50

STDEV 178 104 12

Sampe Size n of N=144 117 144 132

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
119

▶ Scanning does not solve the issue! But helps gathering knowledge
▶ Official images are not necessarily free from vulnerabilities

– Vulnerability count higher than expected
▶ But they do receive updates (which might leave vulnerabilities unfixed)

– Not necessarily all images in repo receive updates, Repo updates ~1/Week

▶ 16% of images started from scratch
▶ 10% of images marked as deprecated
▶ Rest goes back to few base images: Debian highly important, Alpine growing popularity

▶ Most images around 150MB with ~18 layer
– Alpine among smallest -> results in reduced risk vulnerabilities

▶ Fixed + vulnerabilities propagate from parent to child - Monitor complete chain for updates

Summary

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
120

Going Further

Source: Shu, R., Gu, X., & Enck, W. (2017). A Study of Security Vulnerabilities on Docker Hub. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy - CODASPY ’17

A Study of Security Vulnerabilities on Docker Hub

Rui Shu, Xiaohui Gu and William Enck
North Carolina State University
Raleigh, North Carolina, USA

{rshu, xgu, whenck}@ncsu.edu

ABSTRACT

Docker containers have recently become a popular approach
to provision multiple applications over shared physical hosts
in a more lightweight fashion than traditional virtual ma-
chines. This popularity has led to the creation of the Docker
Hub registry, which distributes a large number of official and
community images. In this paper, we study the state of se-
curity vulnerabilities in Docker Hub images. We create a
scalable Docker image vulnerability analysis (DIVA) frame-
work that automatically discovers, downloads, and analyzes
both official and community images on Docker Hub. Using
our framework, we have studied 356,218 images and made
the following findings: (1) both official and community im-
ages contain more than 180 vulnerabilities on average when
considering all versions; (2) many images have not been up-
dated for hundreds of days; and (3) vulnerabilities commonly
propagate from parent images to child images. These find-
ings demonstrate a strong need for more automated and
systematic methods of applying security updates to Docker
images and our current Docker image analysis framework
provides a good foundation for such automatic security up-
date.

Keywords

Docker Images; Security Vulnerabilities; Vulnerability Prop-
agation

1. INTRODUCTION
The container abstraction has become a popular technique

for running multiple application services on a single host.
Similar to system virtualization, containers provide an iso-
lated runtime environment and easy methods to package and
deploy many instances of an application. However, in con-
trast to system virtualization, containerized applications on
the same host share the host operating system kernel and
services. Containers wrap system libraries, files, and code
that are needed to support the target application. In doing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22-24, 2017, Scottsdale, AZ, USA

c⃝ 2017 ACM. ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029832

so, containers become significantly more lightweight than
system virtualization, leading to its recent popularity.

Docker is one of the most widely used container-based
technologies. Docker distributes applications (e.g., Apache,
MySQL) in the form of images. Each image contains the
target application software as well as its supporting libraries
and configuration files. As a result, Docker images provide
a convenient way to store and deliver applications. New im-
ages need not to start from scratch. Rather, a new image
can extend existing images, creating a parent-child relation-
ship between images. At the roots of these inheritance trees
are a set of base (or root) images that provide bare-bones
functionality for a specific platform (e.g., Ubuntu).

A community has been developed around the creation and
sharing of Docker images. Docker Hub,1 introduced in 2014,
is a cloud registry service for sharing application images.
Images are distributed using repositories, which allow ver-
sioned image development and maintenance. Repositories
can branch off of other repositories. For example, a main-
tainer can create an image myimage:v1 in the myimage repos-
itory by building upon the ubuntu:16.04 image in ubuntu

repository. After installing application softwares, the main-
tainer can tag the working image as myimage:v2. Later, af-
ter applying some security updates, the image can be tagged
myimage:v3.

Docker Hub contains two types of public repositories: of-
ficial and community. Official repositories contain public,
certified images from vendors (e.g., Canonical, Oracle, Red
Hat, and Docker). In contrast, community repositories can
be created by any user or organization. At the time of writ-
ing, there were nearly 100 official repositories. While there
is no list of community repositories, our study has identified
about 100,000 public community repositories.

In January 2015, a Forrester survey [14] of enterprises
indicated that security was a top concern when deciding
whether to deploy containers. The survey found that of
the various security concerns, the Vulnerabilities & Malware
concern was the greatest. Therefore, we hypothesize that the
complexity of software configuration in Docker Hub images,
combined with a large number of images built by various
parties, results in a significantly vulnerable landscape. This
intuition leads us to the primary research question of this
work: what is the state of security vulnerabilities in Docker
Hub images?

In this paper, we provide an evaluation of security vul-
nerabilities in both official and community images that are

1https://hub.docker.com/

269

Table 4: Vulnerability types ranked per year by the number of impacted :latest official images.

Vulnerability Type
Rank (Number of impacted images)

2015 2014 2013 2012 2011 2010 2009

Overflow 1 (78) 1 (75) 3 (14) 5 (5) 2 (2) 1 (66) 1 (14)
Denial of service 2 (77) 1 (75) 1 (56) 1 (44) 2 (2) 1 (66) 4 (1)
Obtain information 2 (77) 7 (6) 5 (12) 6 (0) 5 (0) 4 (30) 5 (0)
Bypass a restriction or similar 4 (57) 4 (40) 6 (1) 2 (28) 1 (3) 1 (66) 2 (2)
Execute code 5 (56) 1 (75) 2 (34) 3 (22) 5 (0) 6 (0) 2 (2)
Gain privileges 6 (33) 10 (0) 6 (1) 4 (15) 5 (0) 6 (0) 5 (0)
Memory corruption 7 (4) 6 (7) 4 (4) 6 (0) 4 (1) 6 (0) 5 (0)
Cross site scripting 8 (2) 8 (4) 6 (1) 6 (0) 5 (0) 6 (0) 5 (0)
Directory traversal 9 (1) 5 (8) 6 (1) 6 (0) 5 (0) 5 (13) 5 (0)
Http response splitting 10 (0) 9 (2) 10 (0) 6 (0) 5 (0) 6 (0) 5 (0)

Table 5: Vulnerability types ranked per year by the number of impacted :latest community images.

Vulnerability Type
Rank (Number of impacted images)

2015 2014 2013 2012 2011 2010 2009

Denial of service 1 (60k) 1 (60k) 1 (54k) 1 (39k) 1 (5k) 1 (30k) 3 (2k)
Overflow 2 (60k) 2 (59k) 3 (38k) 5 (6k) 4 (3k) 2 (26k) 1 (7k)
Obtain information 3 (59k) 7 (23k) 4 (36k) 6 (4k) 8 (174) 4 (17k) 7 (2)
Bypass a restriction or similar 4 (58k) 4 (49k) 5 (15k) 3 (20k) 3 (3k) 3 (26k) 5 (277)
Execute code 5 (58k) 3 (59k) 2 (47k) 2 (20k) 2 (3k) 6 (1k) 2 (2k)
Gain privilege 6 (52k) 9 (5k) 8 (942) 4 (11k) 7 (255) 7 (94) 9 (0)
Memory corruption 7 (31k) 5 (40k) 6 (5k) 7 (871) 5 (2k) 9 (6) 6 (10)
Cross site scripting 8 (7k) 10 (4k) 7 (980) 8 (198) 6 (387) 8 (88) 4 (486)
Directory traversal 9 (4k) 6 (35k) 11 (69) 10 (94) 10 (4) 5 (14k) 9 (0)
Cross site request forgery 10 (2k) 11 (276) 9 (644) 12 (54) 10 (4) 10 (0) 9 (0)
Http response splitting 11 (466) 8 (9k) 12 (0) 11 (67) 9 (58) 10 (0) 9 (0)
Sql injection 12 (16) 12 (42) 10 (218) 9 (158) 10 (4) 10 (0) 8 (1)

vulnerabilities. Recall from Section 2.2 that Clair reports
the vulnerable package name. Table 6 shows the top-ten
packages for both community images (all and latest) and
official images (all and latest). Note that the statistics are
calculated across all versions of the package. For official
images, glibc is the most frequent offender, affecting over
80% images in both all versions and the latest version. The
glibc package is also the most significant offender for com-
munity images. Another observation is that some packages
(e.g., util-linux, shadow, perl, openssl, etc.) appear in each
category. Therefore, it is possible that a small number of
vulnerable packages cause a significant impact on Docker
Hub. These packages could be targeted specifically to im-
prove the security of the Docker Hub ecosystem.

4.5 Image Dependency Relationship
Our third research question seeks to understand the rela-

tionship between image dependencies and vulnerability prop-
agation. Child images can be created from both official and
community images. There are two general ways to build
child images from parent images. First, if a user updates a
running image that was downloaded from Docker Hub, that
image can be committed as a new image. Second, a Docker
Hub repository maintainer can specify a FROM instruction
in the Dockerfile of a new image. This instruction speci-
fies the base image, which Docker automatically downloads
to the Docker host when building the new image from the
Dockerfile. Both of the methods may lead to vulnerability
propagation. We study this relationship from two perspec-
tives: (1) the degree of propagation from parent image to
child image, and (2) the factors that promote propagation.
RQ3.1: To what degree do child images add, inherit, or

remove vulnerabilities? In Section 2.3 we described an algo-
rithm of identifying the CVEs relationships between a parent
and child image. Figure 8 shows the average number of new,

unpatched, and patched CVEs per edge between images in
the dependency graph. Further, we distinguish between the
types of inheritance: official to official, official to community,
and community to community. The figure shows that child
images inherit on average 80 or more vulnerabilities from
their parents, regardless if the parent is official or commu-
nity. Furthermore, child images frequently introduce new
vulnerabilities. This is an interesting observation, because
it suggests that when a child installs new software packages,
the maintainer is not applying security updates (e.g., with
apt-get upgrade). That said, Figure 8 does indicate the
vulnerability propagation is slightly better for child images
that are created from official images.

RQ3.2: How does image popularity promote vulnerabil-
ity propagation? We answer this question in three stages.
First, we identify the top most influential OS and non-OS
base images, as determined by the number of descendant
images. Tables 7 and 8 list the top 10 OS and non-OS base
images along with the number of descendant images. Our
results for top OS base images is consistent with an Au-
gust 2015 study by CenturyLink [19]. Second, we look at
the distribution of influential base images (Figure 9), we see
that there are a relatively small number of very influential
images. Finally, we correlate top ranked images with top
vulnerable packages.

Tables 7 and 8 list the top vulnerable packages (from Ta-
ble 6) for the top OS and non-OS base images. The tables
show that many of the top vulnerable packages appear in
the top influential base images. Thus, it is highly likely that
the root cause of pervasive vulnerabilities on Docker Hub is
the result of propagation from a relatively small set of highly
influential base images. As such, future work should inves-
tigate methods of automatically pushing updates based on
the dependency graph.

276

Table 6: Top ten packages causing images to contain vulnerabilities.

Rank
Package name (Percentage of impacted images)

Official Official :latest Community Community :latest

1 glibc (89.81%) glibc (81.91%) glibc (84.24%) glibc (84.82%)
2 util-linux (89.55%) util-linux (81.91%) openssl (78.32%) openssl (78.51%)
3 shadow (89.55%) shadow (81.91%) util-linux (77.01%) util-linux (77.24%)
4 perl (87.29%) audit (77.66%) shadow (77.01%) shadow (77.24%)
5 apt (83.82%) perl (73.40%) perl (74.07%) perl (73.05%)
6 openssl (83.79%) tar (72.34%) pam (70.92%) pam (70.53%)
7 tar (83.58%) apt (70.21%) pcre3 (66.54%) audit (67.10%)
8 openldap (76.85%) openssl (67.02%) audit (65.48%) pcre3 (65.59%)
9 krb5 (76.06%) systemd (67.02%) krb5 (64.99%) dpkg (64.36%)
10 audit (73.51%) gcc (65.96%) libidn (64.54%) libidn (62.93%)

Figure 8: Statistics of the pattern of CVE propagation.

4.6 Summary
Our experimental study reveals a set of key findings about

the security vulnerabilities of Docker Hub:

1. Both official and community images contain more than
180 vulnerabilities on average when considering all ver-
sions. Although the latest official images contain fewer
vulnerabilities, the average number of vulnerabilities
per image still reach more than 70. In contrast, the
number of vulnerabilities contained in the latest com-
munity images shows little difference from that of all
community images. In addition, more than 80% of
both types of images have at least one high severity
level vulnerability.

2. About 50% of both community and official images have
not been updated in 200 days, and about 30% of im-
ages have not been updated in 400 days. There is
some difference in the percentage of more frequently
updated images (i.e., updated in 14 days) between of-
ficial images and community images: approximately
20% for all official images verses approximately 10%
for all community images. In contrast, nearly 86% of
the latest official images have been updated in less than
14 days.

3. Child images bring in about 20 more new vulnerabili-
ties on average, and they also inherit 80 vulnerabilities

Figure 9: Distribution of the number of descendant images.

on average from their parent images. The vulnerabil-
ity propagation is slightly better when child images are
created from official images. In addition, there are a
relatively small number of influential base images, and
we also find top vulnerable packages mostly appear in
all top influential base images.

5. FUTURE WORK DISCUSSION
First, our current architecture depends on Clair to stat-

ically identify vulnerabilities from installed packages. One
possible enhancement for our work is to dynamically scan in-
dependent packages that are being installed in the running
containers. As a result, we can achieve most timely detec-
tion of vulnerabilities introduced by the package update to
running docker containers.

Second, we hope to patch the running containers when a
vulnerability is detected. One possible approach is to up-
grade packages to secure version in running containers, e.g.,
with apt-get upgrade. However, creating containers from
images and committing patched containers into images in-
cur resource overhead (e.g., CPU, disk) to the hosts. More-
over, applications or containers might require rebooting after
patching, which would incur undesirable unavailability for
server applications (e.g., a production web server). There-
fore, it is challenging to develop an effective and practical
security patching solution, which is also part of our future
work.

277

Anomaly Detection

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
123

Sysdig + Sysdig/Falco

Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins

Source: https://www.sysdig.org | https://www.sysdig.org/wiki/sysdig-examples/

Source: https://sysdig.com/blog/csysdig-explained-visually/

Source: https://www.sysdig.org/falco/ | https://github.com/draios/falco/blob/dev/rules/falco_rules.yaml

Szenario Sysdig Falco

Ausnutzung einer Sicherheitslücke in einer Webapplikation ✔ ✔

Erkennung eines Buffer Overflows ⭕ ⭕

Container Breakout ✔ ⭕

Applying Bag of System Calls for Anomalous
Behavior Detection of Applications in Linux

Containers
Amr S. Abed

Department of Electrical & Computer Engineering
Virginia Tech, Blacksburg, VA

amrabed@vt.edu

T. Charles Clancy, David S. Levy
Hume Center for National Security & Technology

Virginia Tech, Arlington, VA
{tcc, dslevy}@vt.edu

Abstract—In this paper, we present the results of using bags

of system calls for learning the behavior of Linux containers

for use in anomaly-detection based intrusion detection system.

By using system calls of the containers monitored from the host

kernel for anomaly detection, the system does not require any

prior knowledge of the container nature, neither does it require

altering the container or the host kernel.

I. INTRODUCTION

Linux containers are computing environments apportioned
and managed by a host kernel. Each container typically runs a
single application that is isolated from the rest of the operating
system. A Linux container provides a runtime environment for
applications and individual collections of binaries and required
libraries. Namespaces are used to assign customized views, or
permissions, applicable to its needed resource environment.
Linux containers typically communicate with the host kernel
via system calls.

By monitoring the system calls between the container and
the host kernel, one can learn the behavior of the container in
order to detect any change of behavior, which may reflect an
intrusion attempt against the container.

One of the basic approaches to anomaly detection using
system calls is the Bag of System Calls (BoSC) technique.
The BoSC technique is a frequency-based anomaly detection
technique, that was first introduced by Kang et al. in 2005 [1].
Kang et al. define the bag of system call as an ordered list
< c1, c2, . . . , cn >, where n is the total number of distinct
system calls, and c

i

is the number of occurrences of the system
call, s

i

, in the given input sequence. BoSC has been used for
anomaly detection at the process level [1] and at the level of
virtual machines (VMs) [2][3][4], and has shown promising
results.

The fewer number of processes in a container, as compared
to VM, results in reduced complexity. The reduced complexity
gives the potential for the BoSC technique to have high detec-
tion accuracy with a marginal impact on system performance
when applied to anomaly detection in containers.

In this paper, we study the feasibility of applying the BoSC
to passively detect attacks against containers. The technique
used is similar to the one introduced by [3]. We show

that a frequency-based technique is sufficient for detecting
abnormality in container behavior.

The rest of this paper is organized as follows. Section II
provides an overview of the system. Section III describes the
experimental design. Section IV discusses the results of the
experiments. Section V gives a brief summary of related work.
Section VI concludes with summary and future work.

II. SYSTEM OVERVIEW

In this paper, we use a technique similar to the one described
in [3] applied to Linux containers for intrusion detection. The
technique combines the sliding window technique [5] with the
bag of system calls technique [1] as described below.

The system employs a background service running on the
host kernel to monitor system calls between any Docker
containers and the host Kernel. Upon start of a container,
the service uses the Linux strace tool to trace all system
calls issued by the container to the host kernel. The strace
command reports system calls with their originating process
ID, arguments, and return values. A table of all distinct system
calls in the trace is also reported at the end of the trace along
with the total number of occurrences.

The full trace, and the count table, are stored into a log
file that is processed offline and used to learn the container
behavior after the container terminates. At this point, we are
not performing any real-time behavior learning or anomaly
detection. Therefore, dealing with the whole trace of the con-
tainer offline is sufficient for our proof-of-concept purposes.
However, for future purposes, where behavior learning and
anomaly detection is to be achieved in real time (in which case
the full trace would not be available), the learning algorithm
applied would slightly differ from the one described here.
However, the same underlying concepts will continue to apply.

The generated log file is then processed to create two
files, namely syscall-list file and trace file. The syscall-list file
holds a list of distinct system calls sorted by the number of
occurrences. The trace file holds the full list of system calls
as collected by strace after trimming off arguments, return
values, and process IDs. The count file is used to create an

Source: Abed et al., (n.d.). Applying Bag of System Calls for Anomalous Behavior Detection of Applications in Linux Containers.
Abed, A. et al., (2015). Intrusion Detection System for Applications Using Linux Containers. Security and Trust Management

Fig. 1. Real-time Intrusion Detection System

Our system employs a background service running on the host kernel to mon-
itor system calls between any Docker containers and the host Kernel. Starting
a new container on the host kernel triggers the service, which uses the Linux
strace tool to trace all system calls issued by the container to the host kernel.
The strace tool reports system calls with their originating process ID, argu-
ments, and return values.

In addition, strace is also used to generate a syscall-list file that holds a
preassembled list of distinct system calls sorted by the number of occurrences.
The list is collected from a container running the same application under no
attack. The syscall-list file is used to create a syscall-index lookup table. Table 1
shows sample entries of a typical syscall-index lookup table.

The behavior file generated by strace is then parsed in either online or
o✏ine mode. In online mode, the system-call parser reads system calls from the
same file as it is being written by the strace tool for real-time classification.
O✏ine mode, on the other hand, is only used for system evaluation as described
in section 4. In o✏ine mode, a copy of the original behavior file is used as input
to the system to guarantee the coherence between the collected statistics. The
system call parser reads one system call at a time by trimming o↵ arguments,
return values, and process IDs.

Table 1. Syscall-Index Lookup Table

Syscall Index

select 4

access 12

lseek 22

other 40

Table 2. Example of system call parsing

Syscall Index Sliding window BoSC
pwrite 6 [futex, futex, sendto, futex, sendto, pwrite] [2,0,3,0,0,0,1,0,...,0]
sendto 0 [futex, sendto, futex, sendto, pwrite, sendto] [3,0,2,0,0,0,1,0,...,0]
futex 2 [sendto, futex, sendto, pwrite, sendto, futex] [3,0,2,0,0,0,1,0,...,0]
sendto 0 [futex, sendto, pwrite, sendto, futex, sendto] [3,0,2,0,0,0,1,0,...,0]

The parsed system call is then used for updating a sliding window of size
10, and counting the number of occurrences of each distinct system call in the
current window, to create a new bag of system calls. As mentioned earlier, a
bag of system calls is an array < c1, c2, . . . , cns > where c

i

is the number of
occurrences of system call, s

i

, in the current window, and n
s

is the total number
of distinct system calls. When a new occurrence of a system call is encountered,
the application retrieves the index of the system call from the syscall-index
lookup table, and updates the corresponding index of the BoSC. For a window
size of 10, the sum of all entries of the array equals 10, i.e.

P
ns

i=1 ci = 10. A
sequence size of 6 or 10 is usually recommended when using sliding-window
techniques for better performance [7][19][11]. Here, we are using 10 since it was
already shown for a similar work that size 10 gives better performance than size
6 without dramatically a↵ecting the e�ciency of the algorithm [1]. Table 2 shows
an example of this process for sequence size of 6.

The created BoSC is then passed to classifier, which works in one of two
modes; training mode and detection mode. For training mode, the classifier
simply adds the new BoSC to the normal-behavior database. If the current BoSC
already exists in the normal-behavior database, its frequency is incremented by
1. Otherwise, the new BoSC is added to the database with initial frequency of
1. The normal-behavior database is considered stable once all expected normal-
behavior patterns are applied to the container. Table 3 shows sample entries of
a normal-behavior database.

For detection mode, the system reads the behavior file epoch by epoch. For
each epoch, a sliding window is similarly used to check if the current BoSC is
present in the database of normal behavior database. If a BoSC is not present
in the database, a mismatch is declared. The trace is declared anomalous if the
number of mismatches within one epoch exceeds a certain threshold.

Furthermore, a continuous training is applied during detection mode to fur-
ther improve the false positive rate of the system. The bags of system calls

Update + Approaches
User Namespace
Seccomp Profiles
AppArmor + SELinux

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
131

User Namespaces
2017 Status Update

Rooting out Root:
User namespaces in Docker

Phil Estes
Senior Technical Staff Member, Open Technologies, IBM Cloud

ContainerCon 2015

@estesp

estesp@gmail.com

Why user namespaces?

Security

Currently, by default,
the user inside the
container is root;
more specifically uid
= 0, gid = 0. If a
breakout were to
occur, the container
user is root on the
host system.

Multitenancy

Sharing Docker
compute resources
among more than
one user requires
isolation between
tenants. Providing
uid/gid ranges per
tenant will allow for
this separation.

User Accounting

Any per-user
accounting
capabilities are
useless if everyone is
root. Specifying
unique uids enables
resource limitations
specific to a
user/uid.

ContainerCon 2015

3

Added Security

4

ContainerCon 2015

$ docker run -v /bin:/host/bin -ti busybox /bin/sh

/ # id
uid=0(root) gid=0(root) groups=10(wheel)
/ # cd /host/bin
/host/bin # mv sh old
mv: can't rename 'sh': Permission denied
/host/bin # cp /bin/busybox ./sh
cp: can't create './sh': File exists

Host root ≠ Container root

ContainerCon 2015

So where are we now?

User namespace support in Linux kernel 3.8 (early 2013)

User namespace support in Go 1.4 (December 2014)

User namespace support in libcontainer (February 2015)

22

User Namespace Status

◉ Namespace sharing/ordering details & design are resolved;
implementation/changes underway in runC and libnetwork

> runC hooks PR: https://github.com/opencontainers/runc/pull/160

> libnetwork tracker: https://github.com/docker/libnetwork/issues/429

◉ “Phase 1” user namespace implementation (remapped root
per daemon instance) targeted for Docker 1.9

> tracking issue: https://github.com/docker/docker/issues/15187

> code PR: https://github.com/docker/docker/pull/12648

◉ “Phase 2”--providing full maps and allowing per-container
maps--is still under discussion

ContainerCon 2015

23

“Phase 1” Usage Overview

ContainerCon 2015

docker daemon --root=2000:2000 ...
drwxr-xr-x root:root /var/lib/docker
drwx------ 2000:2000 /var/lib/docker/2000.2000

$ docker run -ti --name fred --rm busybox /bin/sh
/ # id
uid=0(root) gid=0(root) groups=10(wheel)

$ docker inspect -f ‘{{ .State.Pid }}’ fred
8851
$ ps -u 2000
 PID TTY TIME CMD
 8851 pts/7 00:00:00 sh

Start the daemon with a remapped root
setting (in this case uid/gid = 2000/2000)

Start a container and verify that inside the
container the uid/gid map to root (0/0)

You can verify that the container process
(PID) is actually running as user 2000

24Link: https://events.linuxfoundation.org/sites/events/files/slides/User Namespaces - ContainerCon 2015 - 16-9-final_0.pdf

Link: https://integratedcode.us/2017/02/24/user-namespaces-2017-status-update-and-additional-resources/

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
134

Seccomp Profiles
SPEAKER

Source: https://docs.docker.com/engine/security/seccomp/#significant-syscalls-blocked-by-the-default-profile
@Rkt: https://coreos.com/rkt/docs/latest/seccomp-guide.html

Seccomp Profile
$ docker run --rm -it --security-opt
seccomp=/path/to/profile.json hello-
world

Check
$ cat /boot/config-`uname -r` | grep
CONFIG_SECCOMP= CONFIG_SECCOMP=y

SPEAKER: Split-Phase Execution
of Application Containers

Lingguang Lei1,3(B), Jianhua Sun2, Kun Sun3, Chris Shenefiel5, Rui Ma1,
Yuewu Wang1, and Qi Li4

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 College of William and Mary, Williamsburg, USA

3 George Mason University, Fairfax, USA
llei2@gmu.edu, leilingguang@iie.ac.cn

4 Tsinghua University, Beijing, China
5 Cisco Systems, Inc., Raleigh, USA

Abstract. Linux containers have recently gained more popularity as an
operating system level virtualization approach for running multiple iso-
lated OS distros on a control host or deploying large scale microservice-
based applications in the cloud environment. The wide adoption of con-
tainers as an application deployment platform also attracts attackers’
attention. Since the system calls are the entry points for processes trap-
ping into the kernel, Linux seccomp filter has been integrated into pop-
ular container management tools such as Docker to effectively constrain
the system calls available to the container. However, Docker lacks a
method to obtain and customize the set of necessary system calls for
a given application. Moreover, we observe that a number of system calls
are only used during the short-term booting phase and can be safely
removed from the long-term running phase for a given application con-
tainer. In this paper, we propose a container security mechanism called
SPEAKER that can dramatically reduce the number of available system
calls to a given application container by customizing and differentiat-
ing its necessary system calls at two different execution phases, namely,
booting phase and running phase. For a given application container, we
first separate its execution into booting phase and running phase and
then trace the invoked system calls at these two phases, respectively.
Second, we extend the Linux seccomp filter to dynamically update the
available system calls when the application is running from the boot-
ing phase into the running phase. Our mechanism is non-intrusive to
the application running in the container. We evaluate SPEAKER on the
popular web server and data store containers from Docker hub, and the
experimental results show that it can successfully reduce more than 50%
and 35% system calls in the running phase for the data store containers
and the web server containers, respectively, with negligible performance
overhead.

Keywords: Container · System call · Seccomp

c⃝ Springer International Publishing AG 2017
M. Polychronakis and M. Meier (Eds.): DIMVA 2017, LNCS 10327, pp. 230–251, 2017.
DOI: 10.1007/978-3-319-60876-1 11

234 L. Lei et al.

may misuse system calls to disable all the security measures and escape out of
the container [52]. Seccomp can be used to reduce the number of entry points
into the kernel space, thereby reducing the kernel attack surface. Since Docker
version 1.11.0, a --security-opt seccomp option is supported to set a seccomp
profile when the container is launched. It allows the user to set the list of system
calls available to be called inside the container. Currently the default seccomp
profile by Docker has 313 available system calls [5].

Seccomp has three working modes: seccomp-disabled, seccomp-strict, and
seccomp-filter. The seccomp-filter mode allows a process to specify a filter for
the incoming system calls. Linux kernel provides two system calls, prctl() and
seccomp(), to set the seccomp filter mode. However, they can only be used to
change the seccomp filter mode of the calling thread/process and cannot set the
seccomp filter mode of other processes.

3 Design and Implementation

Figure 1 shows the architecture of SPEAKER, which consists of two major mod-
ules, the Tracing Module and the Slimming Module, working in five sequential
steps. For a given application container, the tracing module is responsible for
profiling the available system calls in the booting phase and the running phase,
respectively. The tracing module shares the system call lists with the slimming
module, which is responsible for constraining the available system calls when the
container boots up and runs. Both modules run outside of application contain-
ers as root-privileged processes in the host OS. SPEAKER is non-intrusive, so
it does not require any modification to the applications or the container deploy-
ment tool.

Booting RunningApplication
Containers

Tracing Module

System Call
Tracing

Linux
Control Host
(Outside the
Containers)

Slimming Module

Booting Running

Phase
Separation

1 2

System Call Lists

4 5

Booting Phase
System Call List

Running Phase
System Call List

3

Fig. 1. SPEAKER architecture

SPEAKER: Split-Phase Execution of Application Containers 235

3.1 Tracing Module

This module is to generate system call sets for the booting phase and the running
phase, respectively. It is transparent to the applications inside the container and
consists of two components, phase separation and system call tracing.

Phase Separation. The phase separation is in charge of separating the execu-
tion of the application containers into two phases, namely, the booting phase and
the running phase. Though the booting phase is short, it may require a number
of extra system calls to setup the execution environments, and those system calls
are no longer necessary in the running phase. Moreover, the running phase may
require some extra system calls to support the service’s functions. Thus, it is
important to find the running point that separates these two phases in order to
profile their system calls. For instance, in the booting phase of the Apache web
server, the container and the web server are booted and all modules needed for
the service execution, such as mod php and mod perl, are loaded. In the running
phase, the Apache web server accepts and handles the requests and generates
the responses.

Fig. 2. Number of system calls invoked over container execution time.

We can achieve a reliable phase separation through a polling-based method,
which can find the splitting time point by continuously checking the status
changes of the running service. Once the booting up finishes, the service enters
the running status. Most current Linux distributions provide a service utility
to uniformly manage various services, such as apache, mysql, nginx etc. There-
fore, our polling-based method can find the split-phase time point by checking
the service status through running the service command with status option.
This method works well when the service creates its own /etc/init.d script.

We also develop a coarse-grained phase separation approach, which is generic
and service independent. This method is based on two observations. First, the

Source: Lei, L., Sun, J., Sun, K., Shenefiel, C., Ma, R., Wang, Y., & Li, Q. (2017). SPEAKER: Split-phase execution of application
containers. In Lecture Notes in Computer Science (Vol. 10327 LNCS, pp. 230–251)

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
137

AppArmor + SELinux
LiCShield + DockerPolicyModules

Sources: http://www.projectatomic.io/docs/docker-and-selinux/
https://docs.docker.com/engine/security/apparmor/#understand-the-policies

AppArmor Policy auswählen
$ docker run --rm -it --security-opt
apparmor=docker-default/or-my-policy
hello-world

Source: Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S., & Foschini, L. (2015).
Securing the infrastructure and the workloads of linux containers.

Securing the infrastructure and the workloads of
linux containers

Massimiliano Mattetti⇤, Alexandra Shulman-Peleg†, Yair Allouche†, Antonio Corradi⇤, Shlomi Dolev‡,
Luca Foschini⇤

⇤ CIRI ICT, University of Bologna
† IBM Cyber Security Center of Excellence

‡ Ben-Gurion University

Abstract—One of the central building blocks of cloud platforms
are linux containers which simplify the deployment and man-
agement of applications for scalability. However, they introduce
new risks by allowing attacks on shared resources such as the
file system, network and kernel. Existing security hardening
mechanisms protect specific applications and are not designed
to protect entire environments as those inside the containers. To
address these, we present a LiCShield framework for securing
of linux containers and their workloads via automatic construc-
tion of rules describing the expected activities of containers
spawned from a given image. Specifically, given an image of
interest LiCShield traces its execution and generates profiles of
kernel security modules restricting the containers’ capabilities.
We distinguish between the operations on the linux host and
the ones inside the container to provide the following protec-
tion mechanisms: (1) Increased host protection, by restricting
the operations done by containers and container management
daemon only to those observed in a testing environment; (2)
Narrow container operations, by tightening the internal dynamic
and noisy environments, without paying the high performance
overhead of their on-line monitoring. Our experimental results
show that this approach is efficient to prevent known attacks,
while having almost no overhead on the production environment.
We present our methodology and its technological insights and
provide recommendations regarding its efficient deployment with
intrusion detection tools to achieve both optimized performance
and increased protection. The code of the LiCShield framework as
well as the presented experimental results are freely available for
use at https://github.com/LinuxContainerSecurity/LiCShield.git.

1 INTRODUCTION

Shifting away from traditional on-premises computing, cloud
environments allow to reduce costs via efficient utilization
of servers hosting multiple customers over the same shared
pools of resources. Linux containers are a disruptive technol-
ogy enabling better server utilization together with simplified
deployment and management of applications. Linux containers
provide a lightweight operating system level virtualization
via grouping resources like processes, files, and devices into
isolated spaces that give you the appearance of having your
own machine with near native performance and no additional
virtualization overheads. When comparing between containers
and VMs (in terms of CPU, memory, storage and networking
resources), containers exhibited better or equal results than VM
in almost all cases [24]. Furthermore, container management

software, such as the Docker1 technology [18], enable an
easy packaging and deployment of applications, supporting
the DevOps model of speeding up the development life-cycle
through rapid change, from prototype to production [29], [34].
As a result, linux containers became widely adopted across
all of the cloud layers such as Infrastructure as a service
(IaaS), where they allow achieving near-native performance
and Platform as a service (PaaS), linux containers are used
as deployment packages allowing easy on-boarding of appli-
cations (e.g. CloudFoundry [11]).

Container threats and protection mechanisms. While
optimizing the speed of deployment, linux containers were
not designed as a security mechanism to isolate between
untrusted and potentially malicious containers. They lack the
extra layer of virtualization and thus, are less secure than VMs
[2], [1]. Their vulnerabilities range from kernel exploits and
attacks on the shared linux host resources to misconfigurations,
side channels and data leakage [20]. Thus, container security
is considered an obstacle for an even wider adoption of
containerization technologies [4]. There are two main types
of protection mechanisms that can be applied to container
environments: security hardening mechanisms (e.g., AppArmor
[16] and SELinux [8]) and host based intrusion detection
systems. However, applying both mechanisms to container
environments is not straightforward due to several reasons.
First, there are limitations in properly deploying them in
container environments where part of the workload is executed
on the host and part inside the container, in which case multiple
processes and applications should be grouped and protected to-
gether. Second, their practical application to the noisy container
environments (see Section 5) is not straightforward.

Our approach and contributions. We present the LiC-
Shield framework for protection of Linux Containers and
their workloads. Given a container image of interest, we
automatically construct the security profiles protecting its ex-
ecution both on the linux host and within the container. We
provide a tool-set to trace and analyze containers’ executions,
separating the traces on the host and inside the containers.
We automatically construct AppArmor rules for two different

1Docker and the Docker logo are trademarks or registered trademarks of
Docker, Inc. in the United States and/or other countries. Docker, Inc. and
other parties may also have trademark rights in other terms used herein.

1st Workshop on Security and Privacy in the Cloud (SPC 2015)

978-1-4673-7876-5/15/$31.00 ©2015 IEEE 559

Attacked compo-
nent Mechanisms Compromised

components Examples

Host OS Kernel exploits Host and contain-
ers

A bug in the shared kernel may allow privilege escalation and arbitrary
code execution on the host [14]

Host OS
Shared resources, such as filesys-
tem, volumes, memory and net-
working

Host and contain-
ers

Shocker [15], is a code showing how a malicious container can scan
the filesystem shared with the host till it gets to the file /etc/shadow

with the passwords

Container
Engine

Vulnerabilities in the container en-
gine (running as root) or the li-
braries loaded by it

Host and contain-
ers

CVEs at [14], Vulnerabilities in libraries executed as root (e.g. xz

loaded for compression [13])

Shared Bin/Libs Loading malicious modules Containers Loading a malicious shared object /usr/lib/libnginx.so [27]

Applications Cross-container leakage Containers One container can access the packets of another container via ARP
spoofing [36]

TABLE I
EXAMPLE OF ATTACK ON THE COMPONENTS OF CONTAINER ENVIRONMENTS DEPICTED IN FIGURE 1. ADDITIONAL EXAMPLES CAN BE FOUND AT [12],

[14], [20]

Fig. 2. Approach Overview.

[13]. The profiles generated by LiCShield overcome these
limits by providing a fine-grained control over the containers
and protection against possible vulnerabilities of the container
management tools such as Docker daemon.

3 LICSHIELD APPROACH

Our main goal is to improve the security of cloud servers
executing linux containers, without requiring any significant
changes to the code of cloud platforms, linux distributions or
the container management software, automating the workflow
that can be applied without requiring any other intervention.

Figure 2 provides an overview of the LiCShield architecture
consisting of the following stages:

1) Trace and analyze: LiCShield traces the container creation
and execution in a synthetic testing environment, collect-
ing the information about the performed operations, their
resources and required permissions.

2) Define rules: The traces are processed to create rules that
are used for two purposes: first to generate improved
profiles for linux kernel security modules, such as Ap-
pArmor, restricting the containers’ capabilities; second to
generate rules that can be used to improve the intrusion
detection systems, by automatically feeding the categories
describing normal activities.

3) Co-deploy: We advocate that there is a need to differen-
tiate between the protection of the host and the container
workloads. For the critical host protection, we suggest to
co-deploy LiCShield with HIDS, to achieved higher levels

Fig. 3. Flow Overview.

of security. At the same time, we suggest that noisy, low
risk components can be protected only by LiCShield.

4) Optimize: LiCShield rules can be used to optimize the
learning phase of intrusion detection systems, by pro-
viding the description of the expected activities. This
has several benefits: first, reducing the number of false
positive alerts; second, optimizing the setup and learning
phase. Collecting the information on a per-image basis
in pre-production with LiCShield, saves the overhead of
learning the execution of each of containers spawned from
the same image in the production setup.

4 LICSHIELD DESCRIPTION

Figure 3 shows the first step of the profile generation process,
that we call the tracing phase. In this stage LiCShield takes
a Dockerfile as input, starts the Docker daemon, sends to it
commands using its REST API, and records their execution.
Specifically, it first builds a new container image from the
Dockerfile and then runs this image in a new container, while
tracing the execution. Below we detail the main mechanisms
of LiCShield which include: (1) Tracing the kernel operations;

1st Workshop on Security and Privacy in the Cloud (SPC 2015)

561

DockerPolicyModules:
Mandatory Access Control for Docker Containers

Enrico Bacis, Simone Mutti, Steven Capelli, Stefano Paraboschi
DIGIP — Università degli Studi di Bergamo, Italy

{enrico.bacis, simone.mutti, steven.capelli, parabosc} @ unibg.it

Abstract—The wide adoption of Docker and the ability to
retrieve images from different sources impose strict security
constraints. Docker leverages Linux kernel security facilities,
such as namespaces, cgroups and Mandatory Access Control, to
guarantee an effective isolation of containers. In order to increase
Docker security and flexibility, we propose an extension to the
Dockerfile format to let image maintainers ship a specific SELinux
policy for the processes that run in a Docker image, enhancing
the security of containers.

I. INTRODUCTION

The idea of Linux containerization (i.e., operating-system-
level virtualization) has been around for some time (e.g., LXC,
OpenVZ), but it saw a sudden surge in popularity with the ad-
vent of Docker in 2013 [1]. Docker adopts a simple Dockerfile

format that defines the actions needed to generate a Docker
image, which is then used to instantiate containers. The image
can be built upon other images, available in online repositories.
This facilitates the deployment of lightweight containers to run
software in isolation. More and more Platform-as-a-Service
providers are considering the use of Docker in order to reduce
the resource overhead imposed by traditional virtualization.

Containerization introduces new security challenges. In
fact, as opposed to classical virtualization, Docker does not
need separated operating systems, but it uses the services made
available by the Linux kernel in order to isolate the containers.
The major threat is represented by compromised or malicious
guests attacking other containers that are running on the same
system using local exploits. The security and isolation of the
containers is correctly perceived as the most critical point for
container security.

II. DOCKER SECURITY

Docker leverages Linux kernel security features such as
kernel namespaces to isolate users, processes, networks and
devices, and cgroups to limit resource consumption. When
dealing with containers, the kernel Discretionary Access Con-
trol (DAC) is usually considered insufficient, due to the flexi-
bility it gives to the subjects and the limited control it provides
on the security policy. With Mandatory Access Control (MAC),
subjects cannot bypass the system security policy. SELinux
is one of the most widespread implementations of MAC.
In systems that use SELinux (e.g., RHEL, Centos, Fedora),
Docker takes advantage of the policy defined in the scope of
the sVirt project [2], which aimed at defining SELinux policies
for different virtualization systems. In SELinux it is possible
to separate processes in two ways:

Type Enforcement (TE): a label containing a type is
associated with every subject (process) and system object (e.g.
file, directory). The policy defines the permitted actions among
types, and the kernel enforces these rules. A label with a
reduced set of privileges is assigned by Docker to all the
processes that are run in containers. TE is used to protect the
Docker engine and the host from the containers, which can
come from untrusted sources;

Multi-Category Security1 (MCS): the label assigned to a
subject or an object, can be further specialized with one or
more categories, in order to create different instances of the
same type. An access request is accepted if it is allowed by
TE and the subject and the object are in the same category.
Different containers are assigned different categories, thus they
are separated from each other even if they have the same type.

Currently all the containers run with the same SELinux
type, svirt lxc net t, as defined in the policy configuration file
lxc contexts. Running all the containers with the same type is
a serious limitation. In fact, we have to grant svirt lxc net t

the upper bound of the privileges that a container could ever
need. For example, since different applications operate on
different network ports, svirt lxc net t is allowed to listen to
and communicate over all the network ports [3]. Specializing
the type per container (or even per process) would permit to
tighten the security of Docker containers.

Docker already offers the user the ability to start the
processes in a container with a different SELinux type, through
the –security-opt parameter. However, in this case the user is in
charge of defining a suitable extension to the policy. Recently,
an SELinux policy for the Apache httpd container has been
proposed by Daniel Walsh [3]. When the policy is installed,
the container can be run with the specific type using:

d o c k e r run �d ��s e c u r i t y �o p t type :
d o c k e r a p a c h e t h t t p d

Although it is possible to start containerized processes with
specific SELinux types, there are still limits to the applicability
of this concept. It is reasonable to expect that many users will
either be unfamiliar with the SELinux syntax and semantics,
or do not know how to compile and install a policy module.

III. PROPOSAL

We propose a solution able to introduce specific SELinux
types for different containerized processes in a transparent

1Docker also integrates the SELinux Multi-Level Security (MLS), but it will
not be discussed here since it is not relevant in our proposal.

IEEE CNS 2015 Poster Session

978-1-4673-7876-5/15/$31.00 ©2015 IEEE 749Source: Bacis, E., Mutti, S., Capelli, S., & Paraboschi, S. (2015). DockerPolicyModules: Mandatory Access Control for Docker
containers . 2015 IEEE Conference on Communications and NetworkSecurity, CNS 2015

Und sonst so?

Sources: https://github.com/google/gvisor
https://blog.fefe.de/?ts=a40e855b

Sources: https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf + https://sconecontainers.github.io/
https://www.heise.de/security/meldung/Spectre-Attacken-auch-auf-Sicherheitsfunktion-Intel-SGX-moeglich-3983848.html

“Anything that passes system calls in and
out super fast will be super slow with this“
Jess Frazelle via https://thenewstack.io/look-scone-secure-containers-linux/

Zusammenfassung

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
145

▶ Containers have many benefits + various options + are not necessarily insecure
– Rkt for many workloads an option – for HPC several different approaches

▶ Many tools directly applicable to improve security
– BUT addition configuration, LEARNING PHASE, some stuff still „academic“

▶ Official images are not necessarily free from vulnerabilities
– Develop processes dealing with image provenance, maintenance and

distribution, get an understanding of image related topics
▶ Prefer smaller images over messy ones (Alpine, …)
▶ Deploy SELinux/AppArmor, Seccomp Profiles, AuthZ Plugins, User Namespaces

– Take a look at tools building on these
▶ Consider anomaly detection, MAC does not block „valid attacks“(e.g.) dumping

the whole DB.

Summary

Thanks

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. April 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

For more information please contact:
Holger Gantikow
T +49 7071 94 57-503
h.gantikow@atos.net
h.gantikow@science-computing.de

| 08-06-2018 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service
147

▶ Memes
– Excuse me Sir

• https://i.imgur.com/tDikfo6.png
– Security Seal

• http://s2.quickmeme.com/img/6d/6d9c6e08bc16c07c6aa14f8edadddf7935f8fd07d99
24be8d166e15f04c158d0.jpg

– Cloud Security
• http://memecrunch.com/meme/4SCGN/the-cloud-security/image.jpg

– The Good, the Bad, the Ugly
• http://cinetropolis.net/wp-content/uploads/2013/10/the-good-the-bad-and-the-ugly-

t-anderson-banner.jpg

Sources

