Holger Gantikow

Containing Containers?

Wie lasst sich der Wahl bandigen?

Status Quo Container Security

TUEBIX, JUNI 2017
Trusted partner for your Digital Journey © Atos Aw S

Holger Gantikow 133

Kontakte

Senior Systems Engineer at science +
computing ag
Stuttgart und Umgebung, Deutschland | IT und Services

Aktuell science + computing ag, science + computing
ag, a bull group company
Frither science + computing ag, Karlsruhe Institute of

Technology (KIT) / University of Karlsruhe (TH)
Ausbildung Hochschule Furtwangen University

Zusammenfassung

Diploma Thesis "Virtualisierung im Kontext von Hocherfiigbarkeit" / "Virtualization in the context of
High Availability , IT-Know-How, Experience with Linux, especially Debian&Red Hat, Windows, Mac
OS X, Solaris, *BSD, HP-UX, AIX, Computer Networking, Network Administration, Hardware,
Asterisk, VoIP, Server Administration, Cluster Computing, High Availability, Virtualization, Python
Programming, Red Hat Certified System Administrator in Red Hat OpenStack

Current fields of interest:

Virtualization (Xen, ESX, ESXi, KVM), Cluster Computing (HPC, HA), OpenSolaris, ZFS, MacOS X,
SunRay ThinClients, virtualized HPC clusters, Monitoring with Check_MK, Admin tools for Android
and iOS, Docker / Container in general, Linux 3D VDI (HP RGS, NiceDCV, VMware Horizon, Citrix
HDX 3D Pro)

Specialties: Virtualization: Docker, KVM, Xen, VMware products, Citrix XenServer, HPC, SGE,
author for Linux Magazin (DE and EN), talks on HPC, virtualization, admin tools for Android and
iOS, Remote Visualization

Senior Systems Engineer sC
science + computing ag

April 2009 — Heute (8 Jahre 3 Monate) AtoS
System Engineer |Uoerseizung anzeigen. s¢
science + computing ag, a bull group company

2009 — Heute (8 Jahre) AtoS
Graduand s
science + computing ag

Oktober 2008 — Méarz 2009 (6 Monate) AtoS

Diploma Thesis: "Virtualisierung im Kontext von Hochverfligbarkeit" - "Virtualization in the context of
High Availability"

Intern | Ubersetzung anzeigen |
Karlsruhe Institute of Technology (KIT) / University of Karlsruhe (TH)

August 2008 — September 2008 (2 Monate) Kottty edoge

Research on optimization of computing workflow using Sun Grid Engine (SGE) for MCNPX
calculations.

Hochschule Furtwangen University

Dipl. Inform. (FH), Coding, HPC, Clustering, Unix stuff :-)
2003 — 2009

Auf Linkedin & Xing & Twitter zu finden

HOCHSCHULE

Institut fur Cloud Computing und IT-Sicherheit iy HFU ,0)
<

IfCCITS

SUCCEED
Fakten: WITH

PLYMOUTH
UNIVERSITY

» seit 2009 Forschung im Bereich Cloud Computing und IT-Sicherheit
» Leiter: Prof. Dr. Christoph Reich

» Fakultat: Informatik

« Momentan: 5 PhDs, 4 Masters, 6 Bachelors

» Informationen: www.wolke.hs-furtwangen.de

Link: http://wolke.hs-furtwangen.de

Griindungsjahr

Standorte

Mitarbeiter
Hauptaktionar

Umsatz 2013

Seite 4

cience + computing ag

1989

Tubingen
Miinchen
Berlin
Disseldorf
Ingolstadt

287

Atos SE (100%)
davor Bull
30,70 Mio. Euro

Holger Gantikow - Der Wal im Windkanal | TUEBIX 2016 - Juni 2016

24,82

2010

26,66 30,20

2011 2012

© 2016 science + computing ag

3

0

r

3

2013

Kunden der science + computing ag

EADS

sastErium

NEC

FEWV.

EvoBus

BEHR @ BOSCH

DAIMLER .

7\ Boehringer
' Ingelheim

Seite 6

Bremen, Hamburg Wolfsburg

Beelen

Geschéftsstelle
Berlin

Duisburg

Geschaftsstelle

Diisseldorf Alzenau

Koln

Aach Servicestandort
achen Frankfurt

Mannheim

Geschéftsstelle
Ingolstadt

Stuttgart

Zentrale
Tiibingen

Geschéftsstelle
Miinchen

Holger Gantikow - Der Wal im Windkanal | TUEBIX 2016 - Juni 2016

Y ok)
£

science + computing

| an atos company

@

il

‘t-lu
]
2

(©nfinental &

7N
N
o

OPEL

(/MTU Valeo

© 2016 science + computing ag

Inhalt

6.

7.

. »Containers do not contain

w

. Schlechter Ruf?
. A Year in Docker Security...
. Was sonst noch geschah...

. Trotzdem!

Weiterfiihrendes

Zusammenfassung & Fazit

6

| 24-06-2017 | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service

AtOS

O Einleitung

Abgrenzung

Kein HPC, keine Docker-Alternativen
Kein Singularity+Shifter, kein LXC+Rocket, ...

und auch keine Orchestrierung :(

8 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Container Intro

9 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Evolution of OS-level virtualization

Namespaces CoreOS/rkt

« 2000, BSD

* Expanded (much older)
chroot to isolate

processes

* 2005, Linux
e Linux Kernel Patches

o part of functionality now
in namespaces

* 2006, Linux

e ,process groups"
renamed to ,control
groups"

* limit resource usage of

a collection of processes

& Sun

microsystems

* 2013, Linux
o Initially based on LXC
* Switched to libcontainer

* 2002, Linux
o initial work on mount
namespace
* 2006 additional
namespaces

* 2005, Solaris
« x86, SPARC
e Later ,branded zones"

* 2008, Linux
« Combination of cgroups
+ namespaces

* 2015, Linux
» Started as an
alternative to Docker

Vserver +
OpenVZz

Cgroups Docker

Hypervisor-based virtualization
1999 VMware Workstation 1.0

2001 ESX 1.0 & GSX 1.0

2003 Xen 1lst public release

10 | 24-06-2017 | Holger Gantikow | © Atos 2006 KVM (2.6.10)
GBU Germany | science + computing ag | IT Service

(os 09

Hardware Hardware

Virtualization Container

11 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Docker Intro

12 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

ALISTHEATHINGS

Source: http://cdn.meme.am/instances/500x/59600465.jpg ~1ruJ_n_r_Jrf_,r nat

,Docker is an open platform for developers and
sysadmins to build, ship, and run distributed

applications, whether on laptops, data center
VMs, or the cloud.”

https://www.docker.com/whatisdocker

What is Docker

Docker is the world’s leading software container platform.

14 | 24-06-2017 | Holger Gantikow | © Atos Source: https://www.docker.com/what-docker
GBU Germany | science + computing ag | IT Service

Docker Hub
Docker Toolbox
Docker Compose
Docker Swarm
Docker Machine
Docker Universal Control Plane
Docker Trusted Registry
Docker Cloud
Docker Enterprise Edition
5 124062017 o Ganton 6 Docker , XYZ*)

GBU Germany | s mpt ng g|ITService

The new old Microsoft?

Swarm, Platform lock in (Enterprise Edition), ...
vs Decoupling the plumbing

Link: https://de.slideshare.net/chanezon/building-distributed-systems-without-docker-using-docker-plumbing-projects-linuxcon-

berlin-2016

Source: http://jamespacileo.github.io/Slides-Dockerize-That-Django-App/img/docker-meme.png

Docker 101

& docker

Source: https://upload.wikimedia.org/wikipedia/commons/7/79/Docker_(container_engine)_logo.png

Terminologie
+ Kernkomponenten

19 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Begrifflichkeiten — Core + Workflow Components

{DocKeR_HoST—(ETS

Docker client

Docker daemon

) g
iy

(Linux) System with Docker Daemon

Component

Daemon The engine, running on the host

Client CLI for interacting with Daemon

contains application + environment
Container created from image - start, stop, ...

Component

Registry ~ZApp Store* for images
Public + private repository possible
Dockerfile used for automating image build

20 | 24-06-2017 | Holger Gantikow | © Atos

GBU Germany | science + computing ag | IT Service

AtOS

000

>—

[Docker Engine]

[containerd]

-

Source: https://blog.docker.com/2016/04/docker-engine-1-11-runc/

Same Docker Ul and commands

User interacts with the Docker Engine

Engine communicates with containerd

containerd spins up runc or other OCI
compliant runtime to run containers

Built on existing technology
already included in the Linux Kernel

22 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

How are they implemented?
Let's look in the kernel source!

©® GotoLXR
© Look for "LXC" - zero result
© Look for "container” > 1000+ results

© Almost all of them are about data structures

or other unrelated concepts like “ACPI containers”

© There are some references to “our” containers
but only in the documentation

Source: https://www.youtube.com/watch?v=sK5i-N34im8 &&
https://de.slideshare.net/jpetazzo/cgroups-namespaces-and-beyond-what-are-containers-made-from-dockercon-europe-2015

Container = Namespaces + cgroups

» Beides Kernelfeatures
— Namespaces : einige Subsysteme ns-aware - Illusion isolierter Betrieb
— Cgroups: einige Ressourcen kontrollierbar — Limitierung Ressourcenverbrauch

Process ID Access to block devices
CPU time

Network Interfaces, Routing
Tables, ...

Semaphores, Shared Memory, Device access

Message Queues

Root and Filesystem Mounts memory Memory usage

Hostname, Domainname Packet classification

UserlD and GrouplD

Packet priority

Was kann Docker fur Dich tun?

25 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Abhangigkeiten isolieren
+ Legacy Code
Conflicting Requirements + Dependencies
+ Code ausliefern

26 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

libssl

Container 1

Solver A

lib
gfortran

Container 2

Workflowworkflow

+ Reproduzierbarkeit
,Frozen Environment"
+ Flexibilitat @HPC

Minimal Dockerfile for Image with $TOOL
FROM ubuntu

RUN apt-get update

28 | 24-06-2017 | Holger Gantikow | © Atos RUN apt-get install $TOOL
GBU Germany | science + computing ag | IT Service

=~ shh433 (Seite 1 von 14)

th

Peltzer et al. Genome Biology (2016) 17:60

DOI 10.1186/513059-016-0918-2 Genome BIOlOgy

SOFTWARE pen Access

EAGER: efficient ancient genome
reconstruction

Alexander Peltzer'2>", Gunter Jiger', Alexander Herbig 2>, Alexander Seitz', Christian Kniep®,
Johannes Krause?3> and Kay Nieselt'

Abstract

Background: The automated reconstruction of genome sequences in ancient genome analysis is a multifaceted
process.

Results: Here we introduce EAGER, a time-efficient pipeline, which greatly simplifies the analysis of large-scale
genomic data sets. EAGER provides features to preprocess, map, authenticate, and assess the quality of ancient DNA
samples. Additionally, EAGER comprises tools t¢ genotype samples to discover, filter, and analyze variants.
Conclusions: EAGER encompasses both state-of-the-art tools for each step as well as new complementary tools
tailored for ancient DNA data within a single integrated solution in an easily accessible format.

Keywords: aDNA, Bioinformatics, Authentication, aDNA analysis, Genome reconstruction

Background Until today, there have only been a few contributions
In ancient DNA (aDNA) studies, often billions of towards a general framework for this task, such as the
sequence reads are analyzed to determine the genomic collection of tools and respective parameters proposed
sequence of ancient organisms [1-3). Newly developed by Martin Kircher [8]. However, most of these methods
enrichment techniques utilizing tailored baits to cap- have been developed for mitochondrial data in the con-

Source: www.critic.co.nz/files/article-3423.jpg + Peltzer et al. (2016). EAGER: efficient ancient genome reconstruction.

Performance
,nah am Blech"

30 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

An Updated Performance Comparison of
Virtual Machines and Linux Containers

‘Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio
IBM Research, Austin, TX
{wmf, apferrei, rajamony, rubioj} @us.ibm.com

Abstract—Cloud computing makes extensive use of virtual
machines (VMs) because they permit workloads to be isolated
from one another and for the resource usage to be somewhat
controlled. However, the extra levels of abstraction involved in
virtualization reduce workload performance, which is passed
on (o customers as worse price/performance. Newer advances

Within the last two years, Docker [45] has emerged as a
standard runtime, image format, and build system for Linux
containers.

This paper looks at two different ways of achieving re-
source control today, viz., containers and virtual machines

in d vir the
applications whlle continuing to permit control of the resources
allocated to different applications.

In this paper, we explore the performance of traditional
virtual machine deployments, and contrast them with the use of
Linux containers. We use a suite of workloads that stress CPU,
memory, storage, and networking resources. We use KVM as a
representative hypervisor and Docker as a container manager.
Our results show that containers result in equal or better
performance than VMs in almost all cases Both VMs and
containers require tuning to support I/O-i

and the performance of a set of workloads in both
environments to that of natively executing the workload on
hardware. In addition to a set of benchmarks that stress
different aspects such as compute, memory bandwidth, mem-
ory latency, network bandwidth, and I/O bandwidth, we also
explore the performance of two real applications, viz., Redis
and MySQL on the different environments.

Our goal is to isolate and understand the overhead intro-
duced by virtual machines (specifically KVM) and containers

We also discuss the implications of our perl‘nrmance results for
future cloud architectures.

I. INTRODUCTION

Virtual ines are used ively in cloud

In pamcular the state-of-the-art in Infrastructure as a Serv1ce
(IaaS) is largely with virtual hi Cloud
platforms like Amazon EC2 make VMs available to customers
and also run services like databases inside VMs. Many Plat-
form as a Servive (PaaS) and Software as a Service (SaaS)
providers are built on IaaS with all their workloads running
inside VMs. Since virtually all cloud workloads are currently
running in VMs, VM performance is a crucial component
of overall cloud performance. Once a hypervisor has added
overhead, no higher layer can remove it. Such overheads then
become a pervasive tax on cloud workload performance. There
have been many studies showing how VM execution compares
to native execution [30, 33] and such studies have been a
motivating factor in generally improving the quality of VM
technology [25, 31].

Container-based virtualization presents an interesting al-
ternative to virtual machines in the cloud [46]. Virtual Private
Server providers, which may be viewed as a precursor to cloud
computing, have used containers for over a decade but many
of them switched to VMs to provide more consistent perfor-
mance. Although the concepts underlying conlamem such as

are well d [34], hnol
languished until the desire for rapid deployment led PaaS
providers to adopt and standardize it, leading to a renaissance
in the use of containers to provide isolation and resource con-
trol. Linux is the preferred operating system for the cloud due
to its zero price, large ecosyslem good hardware support, good
performance, and The kernel feature
needed to implement containers in Linux has only become
mature in the last few years since it was first discussed [17].

ly Docker) relative to non-virtualized Linux. We
expeut other hypervisors such as Xen, VMware ESX, and
Microsoft Hyper-V to provide similar performance to KVM
given that they use the same hardware acceleration features.
Likewise, other container tools should have equal performance
to Docker when they use the same mechanisms. We do not
evaluate the case of containers running inside VMs or VMs
running inside containers because we consider such double
virtualization to be redundant (at least from a performance
perspective). The fact that Linux can host both VMs and
containers creates the opportunity for an apples-to-apples com-
parison between the two technologies with fewer confounding
variables than many previous comparisons.

We make the following contributions:

e We provide an up-to-date comparison of native, con-
tainer, and virtual machine environments using recent
hardware and software across a cross-section of inter-
esting benchmarks and workloads that are relevant to
the cloud.

o We identify the primary performance impact of current
virtualization options for HPC and server workloads.

e We elaborate on a number of non-obvious practical
issues that affect virtualization performance.

e We show that containers are viable even at the scale
of an entire server with minimal performance impact.

The rest of the paper is organized as follows. Section II de-
scribes Docker and KVM, providing necessary background to
understanding the remainder of the paper. Section III describes
and evaluates different workloads on the three environments.
We review related work in Section IV, and finally, Section V
concludes the paper.

"In general, Docker equals or exceeds KVM EE
performance in every case we tested. [...]

Even using the fastest available forms of par-
avirtualization, KVM still adds some overhead to
every I/O operation [...].

Thus, KVM is less suitable for workloads that are
latency-sensitive or have high I/O rates.

Container vs. bare-metal:
Although containers themselves have almost no overhead, Docker is
not without performance gotchas. Docker volumes have noticeably

better performance than files stored in AUFS. Docker’s NAT also
introduces overhead for work- loads with high packet rates.

These features represent a tradeoff between ease of management and
performance and should be considered on a case-by-case basis.

An updated performance comparison of vi

DOCKER CONTAINERS ARE NOT MAGICAL VIRTUAL

Source: http://cdn.meme.am/instances/53646903.jpg MncHINEs memege nerator.net

_Containers do not contain"

Zitate

aka ,,Meinungen™

34 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

"Some people make the mistake of
thinking of containers as a better and
faster way of running virtual
machines.

From a security point of view,
containers are much weaker."

Dan Walsh,
SELinux architect

"Virtual Machines might be more
secure today, but containers are
definitely catching up.”

Jerome Petazzoni,
Senior Software Engineer at Docker

"You are absolutely deluded, if not
stupid, if you think that a worildwide
collection of software engineers who
can’t write operating

systems or applications without
security holes, can then turn around
and suddenly write virtualization
layers without security holes.”

Theo de Raadt,
OpenBSD project lead

"Docker’s security status is best
described as “it’s complicated”.

Jerome Petazzoni,
Senior Software Engineer at Docker

Erbsenzahlerei

39 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Virtualization CVEs

Some Free Software VM hosting technologies
Vulnerabilities published in 2014

Xen KVM+ Linux as Linux
PV QEMU general app container
container (non-root)
Privilege
Ve 0 3-5 7-9 4
escalation
(guest—to—host)
Denial of
arvin 3 5-7 12 3
service
(by guest of host)
Information leak 1 0 | |
(from host to guest)
Hosts only
application,

- : t guest OS
Source: Surviving the Zombie Apocalyse - lan Jackson ot gues

http://xenbits.xen.org/people/iwj/2015/fosdem-security/

Schlechter Ruf?

41 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Schlechter Ruf?

Docker Shocker

43 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

vulnerabi ity Matrix @ [] c| shocker.c

£+ ~/Documents/WORK/2017-talks/03_SC-ContainerSecurity/MA.../Literatur/shocker.c . (no function selected) .
1 v| |/x shocker: docker PoC VMM-container breakout (C) 2014 Sebastian Krahmer

Simple table outlining vulnerability to this particular exploit. PRs welcome! 2 *
3 * Demonstrates that any given docker image someone is asking
4 * you to run in your docker setup can access ANY file on your host,
- 5 * e.g. dumping hosts /etc/shadow or other sensitive info, compromising
Docker Version Docker Host OS Vulnerable? 6 * security of the host and any other docker VM's on it.
7 *
.8. 04 - i 8 * docker using container based VMM: Sebarate pid and net namespace,
0.8.1 Ubuntu 12.04 LTS Yes L o < EN] = @ GitHub, Inc. ¢ © ﬁ O H-‘Q * stripped caps and RO bind mounts into container's /. However
0 * as its only a bind-mount the fs struct from the task is shared
0.10.0 Ubuntu 12.04 LTS Yes root@precise64:~# docker run gabrtv/shocker * with the host which allows to open files by file handles
. * (open_by_handle_at()). As we thankfully have dac_override and
[***] docker VMM-container breakout Po(C) 2014 [*¥**] B * dac_read_search we can do this. The handle is usually a 64bit
0.11.0 Ubuntu 12.04 LTS Yes [***] The tea from the 90's kicks your sekurity again. [***] 4 % string with 32bit inodenumber inside (tested with ext4).
*kk s 5 . . 4ok * Inode of / is always 2, so we have a starting point to walk
L 1 If you have pending sec consulting, I'1l happily [1 * the FS path and brute force the remaining 32bit until we find the
0.11.1 CoreOS v324.2.0 Yes [***] forward to my friends who drink secury-tea too! [***] * desired file (It's probably easier, depending on the fhandle export
[*] Resolving 'etc/shadow’ * f;nctioz used for the ES hin queztiog: %t soum be a pa{e):nt inode# or
. q * the inode generation which can be obtained via an ioctl).
0.11.1 Ubuntu 12.04 LTS Yes [*] Found vmlinuz * [In practise the remaining 32bit are all 0 :]
[*] Found vagrant *
0.12.0 Ubuntu 12.04 LTS No [*] Found lib64 * tested with docker 0.11 busybox demo image on a 3.11 kernel:
*
[*] Found usr * docker run -i busybox sh
1.0 Boot2Docker No 1P FEIE 000 s _ _ _
[*] Found etc * seems to run any program inside VMM with UID @ (some caps stripped); if
. * user argument is given, the provided docker image still
1.0 CoreOS v343.0.0+ No [+] Match: etc ino=3932161 * could contain +s binaries, just as demo busybox image does.
[*] Brute forcing remaining 32bit. This can take a while... *
o Breo * PS: You should also seccomp kexec() syscall :)
1.0 Ubuntu 12.04 LTS No ¢ N(etcilnyine:jexesacadds * PPS: Might affect other container based compartments too
[*] #=8, 1, char nh[] = {0x01, ©0x00, Ox3c, Ox00, Ox00, 0x00, 0x00, 0x00}; o3
* $ cc -Wall -std=c99 -02 shocker.c -static

[*] Resolving 'shadow’
[*] Found timezone

Examples [*] Found cron.hourly

[*] Found skel
Confirmed vulnerable: Docker 0.11.1 running Ubuntu [*] Found shadow
[+] Match: shadow ino=3935729
[*] Brute forcing remaining 32bit. This can take a while...
root@precise64:~# docker version [*] (shadow) Trying: @x00000000
Client version: ©.11.1 [*] #=8, 1, char nh[] = {@xfl, @xed, ©x3c, 0x00, @x00, Ox00, ©x00, 0x00};
Client API version: 1.11 [!] Got a final handle!

aocd ig - [*] #=8, 1, char nh[] = {@xfl, @x@d, ©x3c, Ox00, Ox00, 0x00, 0x00, Ox00};
[!] Win! /etc/shadow output follows:
root:!:15597:0:99999:7:::
daemon:*:15597:0:99999:7:::
bin:*:15597:0:99999:7:::
Sys:*:15597:0:99999:7:::
sync:*:15597:0:99999:7:::

r
*
<

#define _GNU_SOURCE
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <stdint.h>

v struct my_file_handle {
unsigned int handle_bytes;
int handle_type;

unsigned char f_handle[8];

ANSI C. Unicode (UTF-8). Unix (LF). o Saved: 08.03.17,19:12:55 [3 5.115/732/

Source: https://github.com/gabrtv/shocker

Missverstandnisse...

45 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Jessie Frazelle's Blog Yy O 0 < D blog.ije 3 0 DO docke

Docker Containers on the i b s e
Desktop

Satu @9 @ @ < [l & news.ycombinator.com ¢ (4] B] +
Hl MackerNews new | comments |show [ask [jobs [submt legin
If yo A Docker containers on the desktop (jessfraz.com)
267 points by julien421 744 days ago | hide | past | web | 74 comments | favorite
engi < — g :
2>] [== & blog.jessfraz.com
M A alexlarsson 743 days ago [-]
[oF) BE. .
. This is not sandboxing. Quite the opposite, this gives the apps root access: ssie Frazelle's Blog
or 10
First of all, X11 is completely unsecure, the "sandboxed" app has full access to every other X11
danc client. Thus, its very easy to write a simple X app that looks for say a terminal window and injects Vi. Gparted
key events (say using Xtest extension) in it to type whatever it wants. Here is another example that
use sniffs the key events, including when you unlock the lock screen: https://github.com/magcius/keylog
Secondly, if you have docker access you have root access. You can easily run something like: Dockerfile
| use docker run -v /:/tmp ubuntu rm -rf /tmp/*
Which will remove all the files on your system. Partition your device in a container.
But
| A jdub 743 days ago [-] MIND BLOWN.
€xp Just so everyone knows, this is Alex "I have a weird interest in application bundling systems"
App Larsson, who is doing some badass bleeding edge work on full on sandboxed desktop
applications on Linux. :-) $ docker run -it \
http://blogs.gnome.org/alexl/2015/02/17/first-fully-sandboxe... -V /tmp/.X11-unix:/tmp/.X11-unix \ # mount the X11 socket
http:// il m/watch?v=t-2a_XYIPEY -e DISPLAY=unix$DISPLAY \ # pass the display
K tkp://Www.youtube.com/watch-v=t-ca_2VIPLY --device /dev/sda:/dev/sda \ # mount the device to partition
Like Ron Burgundy, he's... "kind of a big deal". --name gparted \

(Suffer the compliments, Alex.)

A Iv 743 days ago [-]
Yes, I think that it is important to make this point around as docker gains popularity: security
is not part of their original design. The problem they apparently wanted to solve initially is the
ability for a linux binary to run, whatever its dependencies are, on any system.

It does try to keep containers separated but it does not enforce thatthrough a particularly
strong mechanism.

jess/gparted

GParted Edit View Device Partition Help
]

- [}
New esizeMove | Copy Pa nd

Idevisdaz
6519 Gib

Porttion__[Fe ystem [Moun point [uabe

Idevisda3
384.62 GiB.

size 0

Idevisdal & mfat32 €Rl
[devisda2 _mhfs+

I etciostname, fetcihosts, Jetciresolv.co

20000 MiB
65.19GiB

1236 GiB

Gevisda3 ¢ “birfs |
Idevisdad . Mlinux-swop.

62 Gil
139168

4.00 K8

Bisschen weiter gespielt...

Das ganze dann noch in einer NFS-Umgebung:

[badguy@docker ~]# cd /home/goodguy
bash: cd: /home/goodguy: Permission denied

[badguy@docker ~]# id badguy && id goodguy
uid=1234 (badguy) gid=1234(badguy) groups=1234(badguy),1337(docker)

uid=1000(goodguy) gid=1000(goodguy) groups=1000(goodguy)

[badguy@docker ~]# docker run -it -v /home:/nfs3home -u 1000 busybox sh

/ $ id
uid=1000 gid=0(root)
/ $ touch /nfs3home/goodguy/badguy WAS HERE && exit

AtOS

47 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

L
DOCKER CONTAINERS ARE NOT MAGICAL VIIITIIA‘IS

Source: http://cdn.meme.am/instances/53646903.jpg MncHINEs memege nerator.net

Unpatched Vulnerabilities

49 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Source: https://docs.google.com/presentation/d/1toUKgqgLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

CVE-2015-0235
aka

GHOST

“GHOST is a buffer overflow bug affecting the gethostbyname() and
gethostbyname2() function calls in the glibc library. This vulnerability allows
a remote attacker that is able to make an application call to either of these
functions to execute arbitrary code.”

%

of analyzed images on Quay.io

Coincidence? | think not !
Source: https://docs.google.com/presentation/d/1toUKgqgLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

CVE-2014-0160
aka

Heartbleed

“The TLS and DTLS implementations in OpenSSL do not properly handle
Heartbeat Extension packets, which allows remote attackers to obtain
sensitive information from process memory via crafted packets that trigger
a buffer over-read.”

%

of analyzed images on Quay.io

Source: https://docs.google.com/presentation/d/1toUKgqgLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

Most containers built on same base
layers

centos
official

busybox
official

ubuntu
official

scratch
official

fedora
official

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZIDgxONLduiLmt2yalLROGIiBB7b3L0/

Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins

A Year in Docker Security...

D)

Defense in depth

multiple layers of security controls
»secure platform, secure access, secure content™

56 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Ausgangspunkt

IIEARER [1]

o ¥
I

Container || Container Container || Container Container |l Container | | Container Container

Host OS Host OS Host OS Host OS

Hardware Hardware Hardware

Hardware

57 | 24-06-2017 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Bk

Image Repository

—— “MProvision Mode | Operation Mode {

o

Container Container

L3 "y
Container Concainer Container

Host OS Host OS Host OS Host OS

Hardware Hardware Hardware Hardware

Source: VHPC16: Gantikow et al.

Providing Security in Container-based HPC Runtime Environments

Official Repositories Image
Trusted Registries Provenance+
. . Distribution

Private Registry Layer
Content Trust
Clair Image

. . Content
Project Nautilus Layer
Application-based Anomaly Detection Apfgx:ion

Authorization Plugins
User Namespaces
Seccomp Profiles

Container
Runtime
Layer

Control Groups, Namespaces
Capabilities, Kernel Hardening

SE Linux, AppArmor + bane

Linux Auditing System
OpenSCAP / container compliance
Docker Bench for Security

Provision Mode

59 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Image Provenance + Distribution

60 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Image Provenance + Distribution

OFFICIAL REPOSITORY
» Tools and Technologies |
— Official Repositories (-> *) 7 ﬁ?
— Trusted Registries (on premises) - - |
— Content Trust (image signing + verification)
— Docker Store (new, fully ,compliant, commercially supported software™)
— Private Registry

» Recommendations
— Build, sign and maintain your own (base) images
— Use a private repository with ,curated™ images
— When relying on DockerHub: limit to official repositories

61 | 24-06-2017 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Image Content

62 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Clair

63 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Clair

» Aus dem CoreOS-Projekt, OpenSource — Apache 2.0 Lizenz

» Integriert in die Registry Quay.io
— Prift dort jedes neue Image
— Prift bestehende Images regelmaBig auf neu gemeldete Schwachstellen

» Alternativen (kommerziell):
— Project Nautilus aka ,Docker Security Scanning"
— OpenShift: Red Hat CloudForms mit OpenSCAP Image Scans
— IBM Bluemix (Vulnerability Advisor?)

— Konzept ahnlich - oft mehr Features

64 | 24-06-2017 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Funktionsweise

» Vorgehen - flr alle Schichten eines Images:

— Prufe ob der Hersteller CVEs gemeldet hat Red Hat

Ubuntu
Debian

» Nachteile:

) _ S _ _ Bill of Material
— Schlagt nicht bei handisch installierter SW an Package DB, ...
— Kein Schlangendl, Lizenz-SW, ,Compliance®, ...
65 | 24-06-2017 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Operation Mode

66 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Host

67 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Control Groups + Namespaces

68 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Reminder: Namespaces + cgroups

» Essentiellste Features
— Namespaces : isolierter Betrieb
— Cgroups: Limitierung Ressourcenverbrauch

Process ID Access to block devices
CPU time

Network Interfaces, Routing
Tables, ...

Semaphores, Shared Memory, Device access

Message Queues

Root and Filesystem Mounts memory Memory usage

Hostname, Domainname Packet classification

UserlD and GrouplD

Packet priority

Capabilities + Kernel Hardening

70 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Capabilities + Kernel Hardening

» Capabilities : sehr grob, Add + Drop moglich — genau wissen was man tut ;)
» Ubersicht Giber Capabilities
— http://man7.org/linux/man-pages/man7//capabilities.7.html

Capatibilies auch aktivierbar - hier Hosthame setzen
$ docker run -rm -ti busybox sh

/ # hostname foo

hostname: sethostname: Operation not permitted

$ docker run -rm -ti —cap-add=SYS ADMIN busybox sh
/ # hostname foo<hostname changed>

» Kernel Hardening: moglich hier zu Patchen, ggf Support-Konflikt
— Grsecurity, PaX - Ausnutzung von Buffer Overflows reduzieren, ...
— Im HPC Bereich nicht so gerne gesehen, da ggf Code zur Laufzeit generiert

71 | 24-06-2017 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

Mandatory Access Control Systems
SELinux, AppArmor + bane

72 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

ATOMIC

Docker and SELinu!

The interaction between SEl
concerns: protection of the |
another.

SELinux Labels for Doc

SELinux labels consist of 4 p

User:Role:Type: level.

SELinux controls access to p
forms of SELinux protection
(MCS) separation.

Type Enforcement

Type enforcement is a kind (
process type. It works in the
container process is svirt_Ix(
all files types under /usr an¢
permitted to use the netwol

evirt Iy

Jwww.projectatomic.io/blog/feed.xml” in neuem Tab

fhama Ilrant Imnt

CPUSIOTY CHETIC Y or

Use trusted images v

AppAmmor security profiles
for Docker

'or Docke
Extend Engine v
Dockerize an application v
Engine reference v

Migrate to Engine 1.10
Breakir g changes
Deprecated Engine Features

FAQ

Docker Swarm v
Docker Compose v
Docker Hub v
CS Docker Engine v
Universal Control Plane v

Docker Trusted Registry v

Docker Cloud

Understand the p

s moderately protective while providing ——

compatibility. The profile is the following:

#include <tunables/global>

profile docker-default flags=(attac

#include <abstractions/base>

network,
capability,

file,

umount,

deny
deny
deny
deny
deny

deny

deny
deny
deny
deny
deny
deny
deny

@{PROC}/{*, ***[0-9*],sys/ken
@{PROC}/sysrq-trigger rwklx,
@{PROC}/mem rwklx,
@{PROC}/kmem rwklx,
@{PROC}/kcore rwklx,

mount,

/sys/[AF]*/** wklx,
/sys/f[*s])*/** wklx,
/sys/fs/[~c]*/** wklx,
/sys/fs/c[7g)*/** wklx,
/sys/fs/cg[r]*/** wklx,
/sys/firmware/efi/efivars/**
/sys/kernel/security/** rwkl

Sources: http://www.projectatomic.io/docs/docker-and-selinux/
https://docs.docker.com/engine/security/apparmor/#understand-the-policies

https://github.com/jessfraz/bane

& docs.docker.com/engine/security/apparmor/

' .
LA A OGItHub-ivrazc le/bane: C
The docker-default profie is the defi &

C | 8 GitHub, Inc. [US] https://github.com/jfrazelle/bane

"Reviewing AppArmor profile pull requests is the bane of my existence"

* Jess Frazelle

AppArmor Policy auswahlen

$ docker run --rm -it --security-opt
apparmor=docker-default/or-my-policy
hello-world

- u debu

-profile-dir string

Linux Auditing System

74 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Linux Auditing System (auditd)

» Zugriffsuiberwachungssystem (!Enforcement)
» Logger fur SELinux

» Regeln auf Basis von Dateien und Syscalls

monitor unlink() and rmdir() system calls.
-a exit,always -S unlink -S rmdir

monitor open() system call by UID 4711.

-a exit,always -S open -F loginuid=4711

monitor write-access and change in file properties (r/w/x) of the these files.
-w /etc/passwd -p wa

» Einsatz: Missbrauch und unauthorisierte Aktivitaten, Loggen von:

— Docker related activities (Containerstart, Anderung Config, Zertifikate, Keys,...)
— Erweiterung bestehender Audits + Integration in Monitoring

75 | 24-06-2017 | Holger Gantikow | © Atos Aws

GBU Germany | science + computing ag | IT Service

OBSOLET!
Jetzt Teil von OpenSCAP , oscap-docker™

OpenSCAP/Container Compliance

76 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

(Em] @& GitHub, Inc.

Scanning Docker image using OpenSCAP

Run any OpenSCAP command within chroot of mounted docker image.

oscap-docker image IMAGE_NAME [OSCAP_ARGUMENTS]

Learn more about OSCAP_ARGUMENTS in man oscap .

Exemplary usage

Tested on Fedora host.

yum install scap-security-guide openscap-scanner docker-io
sed -i 's/<platform idref=.*$//g' /usr/share/xml/scap/ssg/fedora/ssg-fedora-ds.xml
service docker start
docker pull fedora
oscap-docker image fedora xccdf eval \
--profile xccdf_org.ssgproject.content_profile_common \
/usr/share/xml/scap/ssg/fedora/ssg-fedora-ds.xml

Scanning Docker container

Run OpenSCAP scan within chroot of running docker container. This may differ from scanning docker image due to
defined mount points.

oscap-docker container CONTAINER_NAME [OSCAP_ARGUMENTS]

Vulnerability scan of Docker container

Link: https://github.com/OpenSCAP/container-compliance

Docker Bench for Security

78 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Audit docker
Audit Docker
Audit Docker
Audit Docker
Audit Docker
Audit Docker
Audit Docker

Initializing Sat Apr 30 23:

Host Configuration .
- Create a separate partif Securlty
- Use an updated Linux Kexy
- Remove all non-essential services from the host - Netwvork
- Keep Docker up to date
* Using 1.12.0 which is current as of 2016-04-27
* Check with your operating system vendor for support and sSecurity maintenance for docker
= Only allov trusted users to control Docker daemon
docker:x:999:

docker run -it --net host --pid host --cap-add
audit control -v /var/lib:/var/lib \ -v
/var/run/docker.sock:/var/run/docker.sock -v
/usr/lib/systemd:/usr/lib/systemd \ -v /etc:/etc -
-label docker bench security docker/docker-bench-

04:50 CEST

ts]

daemon - /usr/bin/docker

files and directories /var/lib/docker

files and directories /etc/docker

files and directories docker.service

files and directories docker.socket

files and directories /etc/default/docker
files and directories /etc/docker/daemon. json

File not found

Audit Docker
Audit Docker

Allow Docker

[N S N S)

* Docker daemon not listening on TCP
.7 = Set default ulimit as appropriate
* Default ulimit doesn't appear to be set

[N

riles and directories /usr/bin/docker-containerd
files and directories /usr/bin/docker-runc

Docker Daemon Configuration
- Restrict network traffic between containers
Set the logging level

to make changes to iptables

Do not use the aufs storage driver

1

2

3
.4 Do not use insecure registries

5

6 Configure TLS authentication for Docker daewon

Link: https://github.com/docker/docker-bench-security

Container Runtime

80 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Ab D0cke 1.10

Authorization Plugins

81 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

docs.docker.com/engine/extend/plugins_au

Authorization allow scenario

HTTP response

Client Daemon AuthZPlugin
HTTP request '
Authentication :
HTTP request, user '

Allow

Daemon command flow :

HTTP response, user

Allow

Client

Daemon

AuthZPlugin

Process request

Process response

www.websequencediagrams.com

Authorization deny scenario

Client

Daemon

AuthZPlugin

HTTP request

Authentication ;

Link: https://github.com/twistlock/authz

github.com/twistlock/authz

Examples
Below are some examples for basic policy scenarios:

1. Alice can run all Docker commands: {"name":"policy_1","users":["alice"],"actions":[""]}

2. All users can run all Docker commands: {"name":"policy_2","users":[""],"actions":[""]}

3. Alice and Bob can create new containers: {"name":"policy_3","users":["alice","bob"],"actions":
["container_create"]}

4. Service account can read logs and run container top: {"name":"policy_4","users":["service_account"],"actions":
["container_logs","container_top"]}

5. Alice can perform anything on containers: {"name":"policy_5","users":["alice"],"actions":["container"]}

6. Alice can only perform get operations on containers: {"name":"policy_5","users":["alice"],"actions":["container"],

“readonly":true }

Installing the plugin

The authorization plugin can run as a container application or as a host service.

Running inside a container

1. Install the containerized version of the Twistlock authorization plugin:

$ docker run -d --restart=always -v /var/lib/authz-broker/policy.json:/var/lib/authz-broker/policy.json -v /run

For auditing using syslog hook add the following settings to the docker command:<code>-e AUDITOR-HOOK:syslog -v /i
For auditing using file add the following settings to the docker command:<code>-e AUDITOR-HOOK:file -v PATH_TO_LO«

Ab D0cke 1.10

User Namespaces

83 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

5> “Phase 1” Usage Overview

docker daemon --root=2000:2000 ...
drwxr-xr-x root:root /var/lib/docker
2000:2000 /var/lib/docker/2000.2000

$ docker run -ti --name fred --rm busybox /bin/sh
/ # id
uid=0(root) gid=@(root) groups=10(wheel)

$ docker inspect -f ‘{{ .State.Pid }}’ fred
8851
$ ps -u 2000
PID TTY TIME CMD
8851 pts/7 00:00:00 sh

Start the daemon with a remapped root
setting (in this case uid/gid = 2000/2000)

Start a container and verify that inside the
container the uid/gid map to root (0/0)

You can verify that the container process
(PID) is actually running as user 2000

Link: https://events.linuxfoundation.org/sites/events/files/slides/User Namespaces - ContainerCon 2015 - 16-9-final_0.pdf

Ab D0cke 1.10

Seccomp Profiles

85 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

[X N] im} & Git github.com/docker/docker/b

Significant syscalls blocked by the default profile

Docker's default seccomp profile is a whitelist which specifies the calls that are allowed. The table below lists the significant
(but not all) syscalls that are effectively blocked because they are not on the whitelist. The table includes the reason each
syscall is blocked rather than white-listed.

Syscall Description

Accounting syscall which could let containers disable their own resource limits or process
accounting. Also gated by CAP_SYS_PACCT .

add_key Prevent containers from using the kernel keyring, which is not namespaced.

adjtimex Similar to clock_settime and settimeofday , time/date is not namespaced.

bpf Deny loading potentially persistent bpf programs into kernel, already gated by CAP_SYS_ADMIN .
clock_adjtime Time/date is not namespaced.

clock_settime Time/date is not namespaced.

. Deny cloning new namespaces. Also gated by cap_sys_apMIN for CLONE_* flags, except
crone CLONE_USERNS .

create_module Deny manipulation and functions on kernel modules.

delete_module Deny manipulation and functions on kernel modules. Also gated by CAP_SYS_MODULE .
finit_module Deny manipulation and functions on kernel modules. Also gated by CAP_SYS_MODULE .
get_kernel_syms Deny retrieval of exported kernel and module symbols.

get_mempolicy Syscall that modifies kernel memory and NUMA settings. Already gated by CAP_SyS_NICE .

Source: https://docs.docker.com/engine/security/seccomp/#significant-syscalls-blocked-by-the-default-profile

Und sonst noch?

docker run ...
--pid-1limit: PID limitations per container, prevent fork-bombs

--security-opt=no-new-privileges: prevent privilege escalation
--readonly: Container / RO, for immutable container images

87 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

1st Workshop on Security and Privacy in the Cloud (SPC 2015)

Securing the infrastructure and the workloads of
linux containers

Massimiliano Mattetti*, Alexandra Shulman-Peleg’, Yair Allouchef, Antonio Corradi*, Shlomi Dolev?,
Luca Foschini*
* CIRI ICT, University of Bologna
T IBM Cyber Security Center of Excellence
* Ben-Gurion University

Abstract—One of the central building blocks of cloud platforms
are linux containers which simplify the deployment and man-
agement of applications for scalability. However, they introduce
new risks by allowing attacks on shared resources such as the
file system, network and kernel. Existing security hardening
mechanisms protect specific applications and are not designed
to protect entire environments as those inside the containers. To
address these, we present a LiCShield framework for securing
of linux containers and their workloads via automatic construc-
tion of rules describing the expected activities of containers
spawned from a given image. Specifically, given an image of
interest LiCShield traces its exccution and generates profles of
kernel security modules restricting the

We distinguish between the operations on the linux host and
the ones inside the container to provide the following protec-
tion mechanisms: (1) Increased host protection, by restricting
the ions done by iners and container

daemon only to those observed in a testing environment; (2)
Narrow container operations, by tightening the internal dynamic
and noisy environments, without paying the high performance
overhead of their on-line monitoring. Our experimental results
show that this approach is efficient to prevent known attacks,

software, such as the Docker' technology [18], enable an
easy kaging and of licati i
the DevOps model of speeding up the development life-cycle
through rapid change, from prototype to production [29], [34].
As a result, linux containers became widely adopted across
all of the cloud layers such as Infrastructure as a service
(IaaS), where they allow achieving near-native performance
and Platform as a service (PaaS), linux containers are used
as deployment packages allowing easy on-boarding of appli-
cations (e.g. CloudFoundry [11]).

Container threats and protection mechanisms. While
optimizing the speed of deployment, linux containers were
not designed as a security mechanism to isolate between
untrusted and potentially malicious containers. They lack the
extra layer of virtualization and thus, are less secure than VMs
[2]. [1]. Their vulnerabilities range from kernel exploits and
attacks on the shared linux host resources to misconfigurations,
side c.h.mnels and data leakage [20]. Thus, container security

while having almost no overhead on the
We present our methodology and its technological insights and

provide recommendations regarding its efficient
intrusion detection tools to achieve both optimized

is an obstacle for an even wider adoption of
comamenzauon technologies [4]. There are two main types
of i that can be applied to container

i security i i (e.g., AppArmor

and increased protection. The code of the LiCShield framework as
well as the presented experimental results are freely available for
use at /LinuxContai ity/LiCShield.git.

1 INTRODUCTION

Shifting away from traditional on-premises computing, cloud
environments allow to reduce costs via efficient utilization
of servers hosting multiple customers over the same shared
pools of resources. Linux containers are a disruptive technol-
ogy enabling better server uul:zanon together with simplified
and of i Linux i
provnde a lightweight operating system level virtualization
via grouping resources like processes, files, and devices into
isolated spaces that give you the appearance of having your
own machine with near native performance and no additional

[16] and SELinux [8]) and host based intrusion detection
systems. However, applying both mechanisms to container
environments is not straightforward due to several reasons.
First, there are limitations in properly deploying them in
container environments where part of the workload is executed
on the host and part inside the container, in which case multiple
processes and applications should be grouped and protected to-
gether. Second, their practical application to the noisy container
environments (see Section 5) is not straightforward.

Our approach and contributions. We present the LiC-
Shield framework for protection of Linux Containers and
their workloads. Given a container image of interest, we
automatically construct the security profiles protecting its ex-
ecution both on the linux host and within the container. We
provide a tool-set to trace and analyze containers’ executions,
separating the traces on the host and inside the containers.

virtualization overheads. When comparing between
and VMs (in terms of CPU, memory, storage and networking
resources), containers exhibited better or equal results than VM
in almost all cases [24]. Furthermore, container management

We i construct AppA rules for two different

"Docker and the Docker logo are trademarks or registered trademarks of
Docker, Inc. in the United States and/or other countries. Docker, Inc. and
other parties may also have trademark rights in other terms used herein.

15t Workshop on S * Privacy in the Cloud (SPC 2015)

Host OS.

working
Vulnerabilities in the container en-

Container gine (running as root) or the i | Hostand contai
Engine Braries loaded by it Toaded for compression
Shared Bin/Libs | Loading malicious modules Containers Loading a malicious shared object /usr/lib/libnginz.so
. One container can access the packets of another container via ARP
Applications Cross-container leakage Containers
spoofing [36)
TABLE [
EXAMPLE OF ATTACK ON THE COMPONENTS OF CONTAINER ENVIRONMENTS DEPICTED IN FIGURE 1. ADDITIONAL EXAMPLES CAN BE FOUND AT [12],
(141,
AppArmor
Trace Files RulesEngine Profiles
.=]] Lanaiyze o : 2 define
. Image
3. co-deploy t Descriptor lm
I 4 optimize
Em———
Container
Instance.
Fig. 2. Approach Overview. Container Engine

[13]. The profiles generated by LiCShield overcome these
limits by providing a fine-grained control over the containers
and protection against possible vulnerabilities of the container
management tools such as Docker daemon.

3 LICSHIELD APPROACH

Our main goal is to improve the security of cloud servers
executing linux containers, without requiring any significant
changes to the code of cloud platforms, linux distributions or
the container management software, automating the workflow
that can be applied without requiring any other intervention.

Figure 2 provides an overview of the LiCShield architecture
consisting of the following stages:

1) Trace and analyze: LiCShield traces the container creation

and execution in a synthetic testing environment, collect-

Host Environment

collect Trace
— Files

Fig. 3. Flow Overview.

of security. At the same time, we suggest that noisy, low
risk components can be protected only by LiCShield.

Optimize: LiCShield rules can be used to optimize the
learning phase of intrusion detection systems, by pro-
viding the description of the expected activities. This
has several benefits: first, reducing the number of false
positive alerts; second, optimizing the setup and learning
pha;e Co]lectmg the information on a per-image basis
in pi with LiCShield, saves the overhead of

&

ing the information about the performed i their
resources and required permissions.

Define rules: The traces are processed to create rules that
are used for two purposes: first to generate improved
profiles for linux kernel security modules, such as Ap-
pArmor, restricting the containers’ capabilities; second to
generate rules that can be used to improve the intrusion
detection systems, by automatically feeding the categories
describing normal activities.

Co-deploy: We advocate that there is a need to differen-
tiate between the protection of the host and the container
workloads. For the critical host protection, we suggest to
co-deploy LiCShield with HIDS, to achieved higher levels

)

]

lsammg the execution of each of containers spawned from
the same image in the production setup.

4 LICSHIELD DESCRIPTION

Figure 3 shows the first step of the profile generation process,
that we call the tracing phase. In this stage LiCShield takes
a Dockerfile as input, starts the Docker daemon, sends to it
commands using its REST API, and records their execution.
Specifically, it first builds a new container image from the
Dockerfile and then runs this image in a new container, while
tracing the execution. Below we detail the main mechanisms
of LiCShield which include: (1) Tracing the kernel operations;

Source: Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S., & Foschini, L. (2015).

Securing the infrastructure and the workloads of linux containers.

Application

Viele Moglichkeiten, wenig fertiges

89 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Anomaly Detection

90 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Applying Bag of System Calls for Anomalous
Behavior Detection of Applications in Linux
Containers

Amr S. Abed
Department of Electrical & Computer Engineering
Virginia Tech, Blacksburg, VA
amrabed @vt.edu

Abstract—In this paper, we present the results of using bags
of system calls for learning the behavior of Linux containers
for use in anomaly-detection based intrusion detection system.
By using system calls of the containers monitored from the host
kernel for anomaly detection, the system does not require any
prior knowledge of the container nature, neither does it require
altering the container or the host kernel.

I. INTRODUCTION

Linux containers are computing environments apportioned
and managed by a host kernel. Each container typically runs a
single application that is isolated from the rest of the operating
system. A Linux container provides a runtime environment for
applications and individual collections of binaries and required
libraries. Namespaces are used to assign customized views, or
permissions, applicable to its needed resource environment.
Linux containers typically communicate with the host kernel
via system calls.

By monitoring the system calls between the container and
the host kernel, one can learn the behavior of the container in
order to detect any change of behavior, which may reflect an
intrusion attempt against the container.

One of the basic approaches to anomaly detection using
system calls is the Bag of System Calls (BoSC) technique.
The BoSC technique is a freq based anomaly dq i
technique, that was first introduced by Kang et al. in 2005 [1].
Kang et al. define the bag of system call as an ordered list
< ¢1,¢9,...,¢, >, where n is the total number of distinct
system calls, and ¢; is the number of occurrences of the system
call, s;, in the given input sequence. BoSC has been used for
anomaly detection at the process level [1] and at the level of
virtual machines (VMs) [2][3][4], and has shown promising
results.

The fewer number of p ina i as
to VM, results in reduced complexity. The reduced complexity
gives the potential for the BoSC technique to have high detec-
tion accuracy with a marginal impact on system performance
when applied to anomaly detection in containers.

In this paper, we study the feasibility of applying the BoSC
to passively detect attacks against containers. The technique
used is similar to the one introduced by [3]. We show

T. Charles Clancy, David S. Levy
Hume Center for National Security & Technology
Virginia Tech, Arlington, VA
{tcc, dslevy} @vt.edu

that a freq based techni is suffici for ds
abnormality in container behavior.

The rest of this paper is organized as follows. Section II
provides an overview of the system. Section III describes the
experimental design. Section IV discusses the results of the
experiments. Section V gives a brief summary of related work.
Section VI concludes with summary and future work.

II. SYSTEM OVERVIEW

In this paper, we use a technique similar to the one described
in [3] applied to Linux containers for intrusion detection. The
technique combines the sliding window technique [5] with the
bag of system calls technique [1] as described below.

The system employs a background service running on the
host kernel to monitor system calls between any Docker
containers and the host Kernel. Upon start of a container,
the service uses the Linux strace tool to trace all system
calls issued by the container to the host kernel. The strace
command reports system calls with their originating process
ID, arguments, and return values. A table of all distinct system
calls in the trace is also reported at the end of the trace along
with the total number of occurrences.

The full trace, and the count table, are stored into a log
file that is processed offline and used to learn the container
behavior after the container terminates. At this point, we are
not performing any real-time behavior learning or anomaly
detection. Therefore, dealing with the whole trace of the con-
tainer offline is sufficient for our proof-of-concept purposes.
However, for future purposes, where behavior learning and
anomaly detection is to be achieved in real time (in which case
the full trace would not be available), the learning algorithm
applied would slightly differ from the one described here.
However, the same underlying concepts will continue to apply.

The generated log file is then processed to create two
files, namely syscall-list file and trace file. The syscall-list file
holds a list of distinct system calls sorted by the number of
occurrences. The trace file holds the full list of system calls
as collected by strace after trimming off arguments, return
values, and process IDs. The count file is used to create an

Anomaly Detection, Alerting, and Incident Response
for Containers

GIAC GCIH Gold Certification

Author: Alex Borhani, r.alex borhani@gmail.com
Advisor: Chris Walker
Accepted: February 19, 2017

Abstract

With the rapid adoption of containerized technologies to support the agile development
and operations (DevOps) methodology, the necessity of formulating a comprehensive
prevention, detection, and incident response (IR) security strategy in those environments
is critical. Though various mechanisms exist to fulfill preventive strategies for containers,
such as system hardening and continuously patching images, the need to implement
similar levels of detection capabilities is also vital, particularly because many
preventative security efforts are eventually neutralized or, worse yet, never implemented
properly. By outlining the capabilities of several open source technologies, this paper will
demonstrate the viability of detecting an anomaly, alerting on the presence of an
anomaly, and facilitating IR to eliminate an anomaly within a containerized and

orchestrated environment.

Source: Abed et al., Applying Bag of System Calls for Anomalous Behavior Detection of Applications in Linux Containers.

Borhani, A. (2017). Anomaly Detection, Alerting, and Incident Response for Containers.

Geplante Verbesserung

92 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Blick in die Zukunft

» Fully unprivileged containers
— Starten von Containern durch non-root User ohne Rechteerweiterung
— Hier in letzter Zeit einiges an Bewegung - aber noch weiter Weg

» Verstarkte Aktivierung von Sicherheitsfeatures ,by default"
— Content Trust, ...

» Phase 2 der User Namespaces:
— custom namespaces per Container
— Upstream Kernel Support wohl schon da
— Ziel: Einsatz in multi-tenant Umgebungen fur uid/gid mapping pro Kunde

Link: Rootless containers - https://github.com/opencontainers/runc/pull/774 && https://www.cyphar.com/blog/post/rootless-

containers-with-runc

Was sonst noch geschah...

Ab D0cke 1.13

Docker Secrets

95 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

blog.docker.com ¢ (V) ﬁ

By integrating secrets into Docker orchestration, we are able to deliver a solution for
the secrets management problem that follows these exact principles.

The following diagram provides a high-level view of how the Docker swarm mode
architecture is applied to securely deliver a new type of object to our containers: a
secret object.

Raft Consensus Group

‘D E}i Internal Distributed Store ’_.:

Manager Manager Manager
Web Ul
o/

@ ®

Wé&er Worker Wn;;&er €
- = P
(1] < (1] —— (][

In Docker, a secret is any blob of data, such as a password, SSH private key, TLS
Certificate, or any other piece of data that is sensitive in nature. When you add a secret
to the swarm (by running docker secret create), Docker sends the secret over to

the swarm manager over a mutually authenticated TLS connection, making use of the
built-in Certificate Authority that gets automatically created when bootstrapping a new

swarm.

$ echo "This is a secret" | docker secret create my_secret
_data -

o
B
I

windsock.io ¢ (4] i O

How are secrets updated?

By design, secrets in Docker swarm mode are immutable. If a secret needs to be rotated, it must
first be removed from the service, before being replaced with a new secret. The replacement
secret can be mounted in the same location. Let's take a look at an example. First we'll create a
secret, and use a version number in the secret name, before adding it to a service as (EERE):

$ < /dev/urandom tr -dc 'a-z0-9' | head -c 32 | docker secret create my_secret_v1.0 -

080zmi3sc@clf55p90o007unaj

$ docker service create --name nginx --secret source=my_secret_v1.0,target=password nginx

t19vuui8u7le66ct@z9cwshlx

Once the task is running, the secret will be available in the container at
Y EESIIERTR). |f the secret is changed, the service can be updated to reflect this:

$ < /dev/urandom tr -dc 'a-z0-9' | head -c 32 | docker secret create my_secret_vi.1 -
p4zugztwx00jf48zz9drv2ove

$ docker service update --secret-rm my_secret_v1.0 --secret-add source=my_secret_vl.1,target
=password nginx

nginx

Source: https://blog.docker.com/2017/02/docker-secrets-management/ && http://windsock.io/secrets-come-to-docker/

s Ohtning 15y,

Sysdig + Sysdig/Falco

97 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Think of sysdig as s
+ iftop + Isof + tr
awesome sauce.

trace + tcpdump + htop

ansaction tracing + SYSdlg

Containerl Container2 Container3 sysdig
App App
v v v v v '

Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins

> foo.scap

!

(optionally)
Save to a
trace file

& sysdigfalco

A shell is run in a container

Unexpected outbound Elasticsearch connection

Write to directory holding system binaries

thorized container namespace change

Non-device files written in /dev (some rootkits do
this)

Process other than skype/webex tries to access
camera

Sysdig Community Wiki Blog

ontainer.id != host and proc.name = bash

user.name = elasticsearch and outbound and not
fd.sport=9300

fd.directory in (/bin, /sbin, /usr/bin,
/usr/sbin) and write

syscall.type = setns and not proc.name in
(docker, sysdig)

(evt.type = creat or evt.arg.flags contains
O_CREAT) and proc.name != blkid and fd.directory
= /dev and fd.name != /dev/null

evt.type = open and fd.name = /dev/videoO and not
proc.name in (skype, webex)

See the entire ruleset

Trotzdem!

Prozesse

Nicht das Rad neu erfinden!
Bestehende Best Practices ubertragen

101 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Images

» als erstes ,Einfallstor" - viele offene Fragen - Prozesse Ubertragen!

— Verwaltung - Auth Integration, rollenbasiert, Integration dritter Quellen
— Scannen - Statische Analyse: Shellshock, SSL, ... -— Umgang damit?

— Bauen - Prozess uUbertragbar? Integration in Configuration Management?
— Integritat - Build -> Run ,untampered"? Signing?

— Umgang mit Third Party Images - ggf analog zu weiterer Software

— Lifecycle - Patchprozess, was wie updaten? Kehrwoche!

— Basisimage - unternehmensweit?

» Passwortverwaltung — wie Passworter in Applikation einbringen

102 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Ams

Sicherheit, Audits

» root, docker-Gruppe - Default: Zugriff auf docker = erweitere Rechte
— Wer darf zugreifen — wie kontrollieren wer was laufen lasste? (RBAC)
» Monitoring
— Was lauft alles — und woher ist das?
— Ist das “sicher™ (Patchlevel)? Kritische Modifikationen durch Container?
» ,Forensic™ - wenn was schief ging
— Wer hat den bésen Container gestartet? Wer gebaut?
— Was hat ein bereits beendeter Container angerichtet? ... anrichten kénnen?
— Logging - was, wohin, Standards?

» Bietet meine Enterprise Distribution die neusten Sicherheitsfeatures?
— Welche Docker Version ist so ggf verfugbar?

103 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Aws

Containers

Theo Combe
Nokia
Bell Labs France
Nozay, France
Email: theo-nokia@sutell.fr

Abstract—Cloud based infrastructures have typically lever-
aged virtualization. However, the need for always shorter
development cycles, continuous delivery and cost savings in
infrastructures, led to the rise of containers. Indeed, containers
provide faster than virtual machines and ti
performance. In this work, we study the security implications of
the use of containers in typical use-cases, through a vulnerability-
oriented analysis of the Docker ecosystem. Indeed, among all
container solutions, Docker is currently leading the market. More
than a container solution, it is a complete packaging and software
delivery tool. In particular, we provide several contributions
to the analysis of the containers security ecosystem: using a
top-down approach, we point out vulnerabilities —present by
design or driven by some realistic use-cases— in the different
components of the Docker environment. Moreover, we detail real
world scenarios where these vulnerabilities could be exploited,
propose possible fixes, and, finally discuss the adoption of Docker
by Paa$ providers.

KEYWORDS
Security, Containers, Docker, Virtual Machines, DevOps,
Orchestration.

1. INTRODUCTION

Virtualization-rooted cloud computing is a mature market.
There are both commercial and Open Source driven solutions.
For the former ones, one may mention Amazon’s Elastic
Compute Cloud (EC2) [1], Google Compute Engine [2] [3],
VMware’s vCloud Air, Microsoft’s Azure, while for the latter
ones include OpenStack with
tion technologies such as KVM or Xen.

Recent developments have set the focus on two main
directions. First, the acceleration of the development cycle
(agile methods and devops) and the increase in complexity of
the application stack (mostly web services and their frame-
works) trigger the need for a fast, easy-to-use way of pushing
code into production. Further, market pressure leads to the
densification of applications on servers. This means running
more applications per physical machine, which can only be
achieved by reducing the infrastructure overhead.

In this context, new lightweight approaches such as con-
tainers or unikernels [4] become increasingly popular, being
more flexible and more resource-efficient. Containers achieve
their goal of efficiency by reducing the software overhead
imposed by virtual machines (VM) [5] [6] [7], thanks to a
tighter integration of guest applications into the host operating
system (OS). However, this tighter integration also increases
the attack surface, raising security concerns.

irtualiza-

Antony Martin
Nokia
Bell Labs France
Nozay, France
Email: antony.martin@nokia.com

- Vulnerability Analysis

Roberto Di Pietro
Nokia
Bell Labs France
Nozay, France
Email: roberto.di-pietro@nokia.com

The existing work on container security [8] [9] [10] [11]
focuses mainly on the relationship between the host and
the container. This is absolutely necessary because, while
virtualization exposes well-defined resources to the guest
system (virtual hardware resources), containers expose (with
restrictions) the host’s resources (e.g. IPC / filesystem) to the
applications. However, the latter feature represents a threat for

iality and availability of icati running on the
same host.

Containers are now part of a complex ecosystem - from
container to various repositories and orchestrators - with a
high level of automation. In particular, container solutions
embed automated deployment chains [12] meant to speed
up code deployment processes. These deployment chains are
often composed of third parties elements, running on different
platforms from different providers, raising concerns about
code integrity. This can introduce multiple vulnerabilities that
an adversary can exploit to penetrate the system. To the best
of our ki , while dep! chains are fu
for the adoption of containers, the security of their ecosystem
has not been fully investigated yet.

Dev machine

Caption
———» Account hijacki
"""" P> Data tampering

What could POssijp|

(Gode) (Daa)

Dockerfile
Git repo

Github

Code injection

{:} Tests falsifica

Test machine 1

Docker Hub

APACHE:

O @
[webhook]

The vulnerabilities we consider are relativel;
to a hosting production system, from the most remote ones
to the most local ones, using Docker as a case study. We
actually focus on Docker’s ecosystem for three reasons. First,
Docker successfully became the reference on the market of
container and associated DevOps ecosystem. In particular,
92% of surveyed people by ClusterHQ and DevOps.com [13]
are using or planning to use Docker in a container solution.
Second, security is the first barrier to container adoption
in production environment [13]. Finally, Docker is already
running in some environments which enable experiments and
exploring the practicality of some attacks.

In this paper, we provide several contributions. First,
we make a thorough list of security issues related to the
Docker ecosystem, and run some experiments on both local
(host-related) and remote (deployment-related) aspects of this
ecosystem. Second, we show that the design of this ecosystem
triggers behaviours (captured in three use-cases) that lower
security when compared to the adoption of a VM based
solution, such as automated deployment of untrusted code.
This is the consequence of both the close integration of
containers into the host system and of the incentive to scatter
the deployment pipeline at multiple cloud providers. Finally,
we argument on the fact that these use-cases trigger and

BIG_OATH

EUROFE '@

Test machine N *

e

Production machine

Attacking a éig Data

Online code R .
(dependencies fetched
when image is built)

Fig. 4: Automated deployment setup in
using github, the Docker Hub, external
repositories from where code is downlo

process.

Source: Combe et al., Containers - Vulnerability Analysis. +

Developer
Dr. Olaf Flebbe
of at oflebbe.de

ApacheGon Bigdata Europe
16.Nov.2016 Seville

http://events.linuxfoundation.org/sites/events/files/slides/AttackingBigDataDeveloper_0.pdf

@ effectivemachines.com

Docker Security in Framework Managed, Multi-user
Environments

Recent Posts

By Allen Wittenauer | 20 0 Comment
Docker Security in Framework Managed, Multi-

user Environments

Unofficial History of the HDFS Audit Log
Building Your Own Apache Hadoop Distribution
Taking Control of Daemons in Apache Hadoop

Adding to Apache Hadoop's Classpath

Recent Comments

Allen Wittenauer on Building Your Own Apache
Hadoop Distribution

david serafini on Building Your Own Apache
Hadoop Distribution

Categories

US Coast Guard Rescue Demo Apache Hadoop

A while back, Jessie Frazelle wrote and published an informative blog post on the differences Apache Yetus
between containers, zones, and jails. Since it touched on security, the blog post reminded me of a
conversation that was had last year when a contributor to the Apache Yetus project asked about this Meta
blog post about one of the bigger security issues with regards to using Docker.

Register
The TL;DR of the issue is that anything permitted usage of dockerd's socket is allowed to mount root Log in
or any other file system that the daemon can also access. The solution provided in the Project Atomic
(aka Red Hat) blog was mainly about the idea that one should just use sudo to limit the damage. In Entries RSS
other words, wrap the docker command such that it specifies all the parameters. Additionally, they Comments RSS

proposed the idea that dockerd should do some authorization to limit who can access dockerd.
WordPress.org

Source: https://effectivemachines.com/2017/06/02/docker-security-in-framework-managed-multi-user-environments/

WeiterfUhrendes

U

Introduction to
Container Security

Source: https://www.docker.com/sites/default/files/WP_In

docker

create resource restrictions around deployed applications. The
Docker container model supports and enforces these restrictions
by running applications in their own root filesystem, allows the

use of separate user accounts, and goes a step further to provide
application sandboxing using Linux namespaces and cgroups

to mandate resource constraints. While these powerful isolation
mechanisms have been available in the Linux kernel for years,
Docker brings forward and greatly simplifies the capabilities to
create and manage the constraints around distributed applications
containers as independent and isolated units.

Docker takes advantage of a Linux technology called namespaces®,
to provide the isolated workspace we call container. When a

container is deployed, Docker creates a set of namespaces for that
specific container, isolating it from all the other running applications.

Docker also leverages Linux control groups. Control groups® (or
cgroups for short), are the kernel level functionality that allows
Docker to control what resources each container has access

to, ensuring good container multi-tenancy. Control groups allow
Docker to share available hardware resources and, if required,

set up limits and constraints for containers. A good example is
limiting the amount of memory available to a specific container, so
it doesn’t completely exhaust the resources of the host.

Process Restrictions

Restricting access and capabilities reduces the amount of surface
area potentially vulnerable to attack. Docker’s default settings are
designed to limit Linux capabilities. While the traditional view of
Linux considers OS security in terms of root privileges versus user
privileges, modern Linux has evolved to support a more nuanced
privilege model: capabilities.

Linux capabilities allow granular specification of user capabilities
and traditionally, the root user has access to every capability.
Typical non-root users have a more restricted capability set, but
are usually given the option to elevate their access to root level
through the use of sudo or setuid binaries. This may constitute a
security risk.

Linux Capabilities

Hostoounding set Container bounaing set

2o Coo e

WHITEPAPER | INTRODUCTION TO CONTAINER SECU

The default bounding set of capabilities inside a Docker container
isless than half the total capabilities assigned to a Linux process
(see Linux Capabilities figure). This reduces the possibility of
escalation to a fully privileged root user through application-level
wulnerabilities. Docker employs an extra degree of granularity,
which dramatically expands on the traditional root/non-root dichotomy.
In most cases, the application containers do not need all the
capabilities attributed to the root user, since the large majority of
the tasks requiring this level of privilege are handled by the OS
environment external to the container. Containers can run with a
reduced capability set that does not negatively impact the applica-
tion and yet improves the overall security system levels and makes
running applications more secure by default. This makes it difficult
to provoke system level damages during intrusion, even if the
intruder manages to escalate to root within a container because
the container capabilities are fundamentally restricted.

Device & File Restrictions

Docker further reduces the attack surface by restricting access

by containerized applications to the physical devices on a host,
through the use of the device resource control groups (cgroups)
mechanism. Containers have no default device access and have
to be explicitly granted device access. These restrictions protect a
container host kernel and its hardware, whether physical or virtual,
from the running applications

Docker containers use copy-on-write file systems, which allow
use of the same file system image as a base layer for multiple
containers. Even when writing to the same file system image,
containers do not notice the changes made by another container,
thus effectively isolating the processes running in independent
containers.

Writable Container

References
e

Add Apache Imag References
»
Add Emacs Image

Debian Base Image

bootfs

Kernel

Any changes made to containers are lost if you destroy the
container, unless you commit your changes. Committing changes
tracks and audits changes made to base images as a new layer
which can then be pushed as a new image for storage in Docker
Hub and run in a container. This audit trail is important in provid-
ing information to maintain compliance. It also allows for fast and
easy rollback to previous versions, if a container has been com-
promised or a vulnerability introduced. There are a few core Linux
kernel file systems that have to be in the container environment

0%20to%20container%20security_03.20.2015%20(1).pdf

VULNERABILITY EXPLOITATION IN DOCKER
CONTAINER ENVIRONMENTS

VULNERABILITY EXPLOITATION IN DOCKER
CONTAINER ENVIRONMENTS

VULNERABILITY EXPLOITATION IN DOCKER
CONTAINER ENVIRONMENTS

In June 2015, ClusterHQ asked enterprises “What are the biggest barriers to putting containers in a

VULNERABILITY EXPLOITATION IN

production environment?” This time, an even higher percentage of enterprises (>60%) said that security was Downloading code without looking at it, that changes often and lacks any integrity check, then piping it to an

the #1 barrier to putting containers in a production environment. interpreter and executing it as root (via putting your password into sudo, hopefully), is a fail. At least curl

DOCKER CONTAINER
ENVIRONMENTS

ANTHONY BETTINI, FOUNDER & CEO, FLAWCHECK

WHAT ARE THE
BIGGEST BARRIERS TO
PUTTING CONTAINERS
IN A PRODUCTION
ENVIRONMENT?

In this question respondents
had the option of rating certain
categories as a major barrier,

Q10 Please rate the following based on how
much of a barrier to adoption they are for
putting containers in a production
environment.

Answered: 249 Skipped: 36

validates the certificate and get.docker.com doesn’t support DHE or export ciphers, but still it's an awful
workflow from a security perspective.

After Docker is installed, you'll realize that it's actually a daemon that runs as root:

[Docker security x AB

ABE'I'I"N'@FLAWCHECK COM moderate barrier, minor barrier &« C fHar docker.com/arti ity \,:(—
= or no barrier at all. 70%
® Major Barrier
Securit; the highest rated 60%
ity vas the ighest rts v marer DOCKEr daemon attack surface
Presented at Black Hat Europe 2015 $;’e”:efcg:‘;";I'“:Setdbafrﬁf:%‘as 0%
data managemgegnt. 40% Running containers (and applications) with Docker implies running the Docker daemon. This
daemon currently requires root privileges, and you should therefore be aware of some
INTRODUCTION 0% ot ot “y q priviieg v
Note: we combined the major and 20% important details.
Containers have been around for a long time. But only recently, have container-based virtualization solutions | moderate barrier responses and
o ’)) grouped them to weigh biggest 10% _
become commonplace within the enterprise. Docker in particular is everywhere. But why? And what does it~ barriers. o First of all, only trusted users should be allowed to control your Docker daemon. This is
mean for enterprise security? Is vulnerability exploitation of Docker containers any different from vulnerability &a@fe@fo}&? o(p;‘ Q&‘* ¢ & e@*@@qqe“
& & o8 & ¥ o S
exploitation of application vuinerabiliies on virtual machines? Are the ways to secure them any different? ‘1‘9‘& S < ;&a" :*‘& K’é\e“éﬁ In the event your Paas$ is starting Docker with the incorrect parameters, such as host networking, users can
e & S ! !
© & < 0*0“0 © actually shutdown the container host!
Before we jump into the vulnerability exploitation piece of the equation, it makes sense to review the security o«"‘

provided by the container solutions themselves — namely the workload isolation security. As with any new
topic, it makes sense to start with a bit of history. How did we even get here?

MODERN HISTORY OF LINUX CONTAINERS

Today, Docker is the most widely used container-based virtualization technology. But Docker itself is an
application (technically, a daemon), built on the container technology provided by the Linux kernel. The
container technology provided by the Linux kernel isn’'t new though, it has been evolving over time, for a very
long time.

Linux container technology is generally accepted to trace back to the days of chroot. Chroot was introduced
way back in 1979 and started to address the isolation problem. Chroot, or “change root” changes the view

of the file system for the process and its children. This was particularly useful for applications such as ftpd, to
restrict the view of the ftp client to subfolders of the chroot’d parent. But chroot itself wasn't built for security

FlawCheck Inc. © Copyright 2015 All Rights Reserved

FlawCheck Confidential. This document is issued by FlawCheck and is Gompany Proprietary. Please do not re-

distribute without permission. Questions or issues may be directed to FlawCheck

Environments-wp.pdf

In August 2015, FlawCheck and one of our partners, surveyed enterprises asking which piece of the security ex
equation was their top concern about running containers in production environments.

1FlawCheck Inc. © Copyright 2015 All Rights Reserved
FlawCheck Gonfidential. This document is issued by FlawGheck and is Gompany Proprietary. Please do not re-

distribute without permission. Questions or issues may be directed to FlawCheck

[ubuntu:pts/7:21:20:~% sudo docker run -it ubuntu bash
[root@08c9aabl5aa5: /# shutdown now

shutdown: Unable to shutdown system
[root@08c9aabl5aa5: /# exit

alie

root@ubunt:
ubuntu:pts/7:21:20:~% Connection to 172.16.135.157 closed by remote host.
Connection to 172.16.135.157 closed.

Docker does actually provide a warning message against this and in practice, it's easy to avoid, but enabling
host networking has surprising consequences.

In an older release of Docker, Docker actually blacklisted kernel calls (remember Docker is basically acting as
a man-in-the-middle between the container and the kernel). By blacklisting kernel calls, Docker missed an

£FlawCheck Inc. © Copyright 2015 All Rights Reserved 7

FlawCheck Confidential. This document is issued by FlawCheck and is Gompany Proprietary. Please do not re-

distribute without permission. Questions or issues may be directed to FlawCheck

Source: https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-

OREILLY

Docker
Security

Using Containers Safely in Production

_—
S

Adrian Mouat

ing hosts between users and will result in a higher number of VMs
and/or machines than reusing hosts, but is important for security.
The main reason is to prevent container breakouts resulting in a
user gaining access to another user’s containers or data. If a con-
tainer breakout occurs, the attacker will still be on a separate VM or
machine and unable to easily access containers belonging to other
users.

Figure 1-1. Segregating containers by host

Similarly, if you have containers that process or store sensitive
information, keep them on a host separate from containers handling
less-sensitive information and, in particular, away from containers
running applications directly exposed to end users. For example,
containers processing credit-card details should be kept separate
from containers running the Node.js frontend.

Segregation and use of VMs can also provide added protection
against Do§ attacks; users won't be able to monopolize all the mem-
ory on the host and starve out other users if they are contained
within their own VM.

In the short to medium term, the vast majority of container deploy-
ments will involve VMs. Although this isn't an ideal situation, it
does mean you can combine the efficiency of containers with the
security of VMs.

Segregate Containers by Host | 7

Source: https://www.openshift.com/promotions/docker-security.html

Seta USER

Never run production applications as root inside the container.
That's worth saying again: never run production applications as root
inside the container. An attacker who breaks the application will
have full access to the container, including its data and programs.
Worse, an attacker who manages to break out of the container will
have root access on the host. You wouldn’t run an application as
root in a VM or on bare metal, so don’t do it in a container.

To avoid running as root, your Dockerfiles should always create a
nonprivileged user and switch to it with a USER statement or from an
entrypoint script. For example:

RUN groupadd -r user_grp && useradd -r -g user_grp user

USER user
This creates a group called user_grp and a new user called user
who belongs to that group. The USER statement will take effect for all
following instructions and when a container is started from the
image. You may need to delay the USER instruction until later in the
Dockerfile if you need to first perform actions that need root privi-
leges such as installing software.

Many of the official images create an unprivileged user in the same
way, but do not contain a USER instruction. Instead, they switch
users in an entrypoint script, using the gosu utility. For example, the
entry-point script for the official Redis image looks like this:

#!/bin/bash

set -e

if ["$1" = 'redis-server']; then

chown -R redis .

exec gosu redis "$@"
fi

exec "$@"

This script includes the line chown -R redis ., which sets the own-
ership of all files under the images data directory to the redis user.
If the Dockerfile had declared a USER, this line wouldn’'t work. The
next line, exec gosu redis "$@", executes the given redis com-
mand as the redis user. The use of exec means the current shell is
replaced with redis, which becomes PID 1 and has any signals for-
warded appropriately.

SecurityTips | 19

nccgroup”

NCC Group Whitepaper

Understanding and Hardening
Linux Containers
April 20, 2016 - Version 1.0

Prepared by

Aaron Grattafiori - Technical Director

Abstract

Operating System virtualization is an attractive feature for efficiency, speed and mod-
ern application deployment, amid questionable security. Recent advancements of
the Linux kernel have coalesced for simple yet powerful OS virtualization via Linux
Containers, as implemented by LXC, Docker, and CoreOS Rkt among others. Recent
container focused start-ups such as Docker have helped push containers into the
limelight. Linux containers offer native OS virtualization, segmented by kernel names-
paces, limited through process cgroups and restricted through reduced root capa-
bilities, Mandatory Access Control and user namespaces. This paper discusses these
container features, as well as exploring various security mechanisms. Also included is
an examination of attack surfaces, threats, and related hardening features in order to
properly evaluate container security. Finally, this paper contrasts different container
defaults and enumerates strong security recommendations to counter deployment
weaknesses- helping support and explain methods for building high-security Linux
containers. Are Linux containers the future or merely a fad or fantasy? This paper
attempts to answer that question.

Source: https://www.nccgroup.trust/globalassets/our-

nccgroup®

Weak or missing procfs and sysfs limits by default. Rkt is effectively missing a number of limits for procfs (/proc)
and sysfs (/sys), allowing information to leak from the container host or easily allowing attacks from the
guest container. This includes but is not limited to the following exploits discussed within 7.2.1 on page 52:
uevent_helper, sysrg-trigger, core_pattern, and modprobe. While some protections are enabled by default
via read-only bind mounts, these can be easily subverted by using CAP_SYS_ADMIN to remount the mounts
as read-write.

9.13 Container Defaults

Listed below are the relevant security features for the three major container platforms explored within this
paper. Each security feature is covered directly or indirectly within this paper and the title can be clicked,
for those which are covered in detail, in order to jump to the relevant section. To avoid any misconceptions,
the following parameters are defined as to their use in the table below:

Default: The security feature is enabled by default.

Strong Default: The most secure configuration is enabled by default.

Weak Default: A less secure configuration is enabled by default.

Optional: The security feature can be optionally configured. This is not a given weakness unless no other
equivilant feature can be configured or enabled.

Not Possible: The security feature cannot be configured in any way, no documentation exists, the feature
is still under development, or the feature is not planned to be implemented.

Available Container Security Features, Requirements and Defaults
Security Feature LXC 2.0 Docker 1.11 CoreOS Rkt 1.3
User Namespaces Default Optional Experimental
Root Capability Dropping Weak Defaults Strong Defaults Weak Defaults
Procfs and Sysfs Limits Default Default Weak Defaults
Cgroup Defaults Default Default Weak Defaults
Seccomp Filtering Weak Defaults Strong Defaults Optional
Custom Seccomp Filters Optional Optional Optional
Bridge Networking Default Default Default
Hypervisor Isolation Coming Soon Coming Soon Optional
MAC: AppArmor Strong Defaults Strong Defaults Not Possible
MAC: SELinux Optional Optional Optional
No New Privileges Not Possible Optional Not Possible
Container Image Signing Default Strong Defaults Default
Root Interation Optional True False Mostly False

research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-10pdf/

CIS Docker 1.12.0 Benchmark

v1.0.0 - 08-15-2016

Source: https://benchmarks.cisecurity.or

1.8 Audit Docker files and directories - /var/lib/docker (Scored,

Profile Applicability:

e Level 1 - Linux Host OS
Description:

Audit /var/1lib/docker.
Rationale:

Apart from auditing your regular Linux file system and system calls, audit all D
related files and directories. Docker daemon runs with "root' privileges. Its bet
depends on some key files and directories. /var/1ib/docker is one such direct
all the information about containers. It must be audited.

Audit:

Verify that there is an audit rule corresponding to /var/1ib/docker directory.

For example, execute below command:

[auditctl -1 | grep /var/lib/docker
This should list a rule for /var/1ib/docker directory.

Remediation:

Add arule for /var/lib/docker directory.

For example,
Add the line as below in /etc/audit/audit.rules file:

[-w /var/iib/docker -k docker

Then, restart the audit daemon. For example,

[service auditd restart

Impact:
Auditing generates quite big log files. Ensure to rotate and archive them period
create a separate partition of audit to avoid filling root file system.

2.11 Use authorization plugin (Scored)

Profile Applicability:

e Level 2 - Docker

Description:

Use authorization plugin to manage access to Docker daemon.
Rationale:

Docker’s out-of-the-box authorization model is all or nothing. Any user with permission to
access the Docker daemon can run any Docker client command. The same is true for callers
using Docker’s remote API to contact the daemon. If you require greater access control, you
can create authorization plugins and add them to your Docker daemon configuration. Using
an authorization plugin, a Docker administrator can configure granular access policies for
managing access to Docker daemon.

Audit:

ps -ef | grep dockerd

Ensure that the '--authorization-plugin' parameter is set as appropriate.
Remediation:

Step 1: Install/Create an authorization plugin.

Step 2: Configure the authorization policy as desired.

Step 3: Start the docker daemon as below:

dockerd —-authorization-plugin=<PLUGIN_ID>

/tools2/docker/CIS_Docker_1.12.0_Benchmark_v1.0.0.pdf

Impact:

Each docker command specifically passes through authorization plugin mechanism. This
might introduce a slight performance drop.

Default Value:

By default, authorization plugins are not set up.

58|Page

DOCKER REFERENCE ARCHITECTURE: SECURING DOCKER DATACENTER AND SECURITY BEST PRACTICES

Secrets requires a Swarm mode cluster. You can use secrets to manage any sensitive data which a container needs at
runtime but you don't want to store in the image or in source control such as:

Usernames and passwords

TLS certificates and keys
SSH keys
Other important data such as the name of a database or internal server

Generic strings or binary content (up to 500 kb in size)

Note: Docker secrets are only available to Swarm services, not to standalone containers. To use this feature,
consider adapting your container to run as a service with a scale of 1.

Another use case for using secrets is to provide a layer of abstraction between the container and a set of credentials.
- g - Consider a scenario where you have separate development, test, and production environments for your application. Each
rC I e C u re . e C u rl n g of these environments can have different credentials, stored in the development, test, and production swarms with the

same secret name. Your containers only need to know the name of the secret to function in all three environments.

D O C ke r D ata Ce n te r a n d When you add a secret to the swarm, Docker sends the secret to the Swarm manager over a mutual TLS connection. The
secret is stored in the Raft log, which is encrypted. The entire Raft log is replicated across the other managers, ensuring
Secu rity Best Practices

the same high availability guarantees for secrets as for the rest of the swarm management data.

Raft consensus group

L -

Web Ul

Service deploy
—_—]

g\ Internal distributed store 8
.] -

Manager Manager Manager

When you grant a newly-created or running service access to a secret, the decrypted secret is mounted into the container
in an in-memory filesystem at /run/secrets/<secret_name>. You can update a service to grant it access to additional
secrets or revoke its access to a given secret at any time.

Source

https://success.docker.com/KBase/Docker_Reference_Architecture%3A_Securing_Docker_Datacenter_and_Security_Best_Practices

Zusammenfassung & Fazit

s Ohtning 15y,

Containers do not contain?

114 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service

Threads & Mitigation I - Container <-> ...

Mitigation

DoS against Host +other containers Cgroups, Quotas, Kernel PID limits
(noisy neighbours) | Forkbomb

Access to host and private Namespaces, seccomp, LSM*;
information + other containers AppArmor, SELinux

Kernel modification + module load Capabilities (dropped by default),
seccomp, LSM, no —privileged

API socket access (for Docker Only share socket with AuthZ
administration + full control over limitations, TLS for TCP endpoints
other container)

* LSM = Linux Security Modules

115| 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Aws

Threads & Mitigation II - External -> Container

Mitigation

DDoS attacks Monitoring infrastructure +
Cgroups, Quotas, Kernel PID limits

(Malicious) remote access Application security model *
Secure passwords *
--readonly FS *

Exploits Static vul. scanning (Clair, ...)
Dynamic scanning

Application Security Not container specific *

Reduced impact by container walls
* same procedure as non-containerized
** cgroups usage more likely in containerized environments

116 | 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Aws

twitter.com/Ben_Hall/status/728¢

ubuntu@ubuntu:~/ebpf_mapfd_doubleput_exploit$./doubleput

starting writev

woohoo, got pointer reuse

writev returned successfully. if this worked, you'll have a root shell in <=60 seconds.
suid file detected, launching rootshell...

we have root privs now...

root@ubuntu:~/ebpf_mapfd_doubleput_exploit# whoami

root

ﬁ Ben Hall
% |1 doenjoy a good Linux Kernel exploit on a Friday afternoon... Especially when protects the host from it 3)

‘.'

Source: https://twitter.com/Ben_Hall/status/728596633978572801

twitter.com/Ben_Hall/status/728

Jbuntu@ubuntu:~/ebpf_mapfd_doubleput_exploit$ sudo docker rur N X
u $(id -u)
ecurity-op 0-né \
vV ' pv /

have no name!@a353bc731b88:/% id

Ben Hall
| do enjoy a good Linux Kernel exploit on a Friday afternoon... Especially when @d protects the host from it 3)

Source: https://twitter.com/Ben_Hall/status/728596633978572801

Zusammenfassung

» Container !'= VM, = Sandbox
— Sicherheit kann mit Containern besser als bare metal sein

» Inzwischen sehr viele Méoglichkeiten zur Absicherung
— Features wollen genutzt werden! Und manchmal erst aktiviert ;)

— Vertrauensvolle Images + sicher konfigurierter Host + limitierter Zugriff +
gesunder Menschenverstand...

— ... - Faktor Mensch wie so oft die schwachste Komponente

» Etablierte Prozesse und Verfahren anwenden
— Nicht weil es ,,so leicht" geht bewahrte Konzepte Uber Bord werfen

119| 24-06-2017 | Holger Gantikow | © Atos
GBU Germany | science + computing ag | IT Service Ams

Thanks

For more information please contact:
Holger Gantikow

T +49 7071 94 57-503
h.gantikow@atos.net
h.gantikow@science-computing.de

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. April 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

