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Abgrenzung
Kein HPC, keine Docker-Alternativen

Kein Singularity+Shifter, kein LXC+Rocket, ...
und auch keine Orchestrierung :(
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Container Intro
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• 2000, BSD
• Expanded (much older) 
chroot to isolate
processes

Jails

• 2002, Linux
• initial work on mount

namespace
• 2006 additional 

namespaces

Namespaces • 2005, Linux
• Linux Kernel Patches
• part of functionality now

in namespaces

Vserver + 
OpenVZ

• 2005, Solaris
• x86, SPARC
• Later „branded zones“

Zones • 2006, Linux
• „process groups“ 

renamed to „control
groups“

• limit resource usage of
a collection of processes

Cgroups

• 2008, Linux
• Combination of cgroups

+ namespaces

LXC • 2013, Linux
• Initially based on LXC
• Switched to libcontainer

Docker

• 2015, Linux
• Started as an 

alternative to Docker

CoreOS/rkt

Hypervisor-based virtualization
1999 VMware Workstation 1.0
2001 ESX 1.0 & GSX 1.0
2003 Xen 1st public release
2006 KVM (2.6.10)

Evolution of OS-level virtualization
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Docker Intro



Source: http://cdn.meme.am/instances/500x/59600465.jpg
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Docker Hub
Docker Toolbox

Docker Compose
Docker Swarm

Docker Machine
Docker Universal Control Plane

Docker Trusted Registry
Docker Cloud

Docker Enterprise Edition
Docker „XYZ“ ;)



| 24-06-2017 | Holger Gantikow | © Atos 
GBU Germany | science + computing ag | IT Service
16

The new old Microsoft?
Swarm, Platform lock in (Enterprise Edition), ...

vs Decoupling the plumbing

Link: https://de.slideshare.net/chanezon/building-distributed-systems-without-docker-using-docker-plumbing-projects-linuxcon-
berlin-2016



Source: http://jamespacileo.github.io/Slides-Dockerize-That-Django-App/img/docker-meme.png



Source: https://upload.wikimedia.org/wikipedia/commons/7/79/Docker_(container_engine)_logo.png

Docker 101
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Terminologie
+ Kernkomponenten
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Begrifflichkeiten – Core + Workflow Components
Component Description

Host (Linux) System with Docker Daemon

Daemon The engine, running on the host

Client CLI for interacting with Daemon

Component Description
Image contains application + environment

Container created from image - start, stop, …

Registry „App Store“ for images
Public + private repository possible

Dockerfile used for automating image build



Source: https://blog.docker.com/2016/04/docker-engine-1-11-runc/
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Built on existing technology
already included in the Linux Kernel



Source: https://www.youtube.com/watch?v=sK5i-N34im8 &&
https://de.slideshare.net/jpetazzo/cgroups-namespaces-and-beyond-what-are-containers-made-from-dockercon-europe-2015
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Container = Namespaces + cgroups

▶ Beides Kernelfeatures
– Namespaces : einige Subsysteme ns-aware – Illusion isolierter Betrieb
– Cgroups: einige Ressourcen kontrollierbar – Limitierung Ressourcenverbrauch

Namespace Description
pid Process ID

net Network Interfaces, Routing 
Tables, …

ipc Semaphores, Shared Memory, 
Message Queues

mnt Root and Filesystem Mounts

uts Hostname, Domainname

user UserID and GroupID

Controller Description
blkio Access to block devices

cpu CPU time

devices Device access

memory Memory usage

net_cls Packet classification

net_prio Packet priority
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Was kann Docker für Dich tun?
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Abhängigkeiten isolieren
+ Legacy Code

Conflicting Requirements + Dependencies
+ Code ausliefern
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Workflowworkflow
+ Reproduzierbarkeit
„Frozen Environment“

+Flexibilität @HPC
Minimal Dockerfile for Image with $TOOL
FROM ubuntu
RUN apt-get update
RUN apt-get install $TOOL



Source: www.critic.co.nz/files/article-3423.jpg + Peltzer et al. (2016). EAGER: efficient ancient genome reconstruction.
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Performance
„nah am Blech“



TABLE I. RESULTS FOR PXZ, LINPACK, STREAM, AND RANDOMACCESS. EACH DATA POINT IS THE ARITHMETIC MEAN OF TEN RUNS. DEPARTURE

FROM NATIVE EXECUTION IS SHOW WITHIN PARENTHESES ”()”. THE STANDARD DEVIATION IS SHOWN WITHIN SQUARE BRACKETS ”[]”.

Workload Native Docker KVM-untuned KVM-tuned
PXZ (MB/s) 76.2 [±0.93] 73.5 (-4%) [±0.64] 59.2 (-22%) [±1.88] 62.2 (-18%) [±1.33]

Linpack (GFLOPS) 290.8 [±1.13] 290.9 (-0%) [±0.98] 241.3 (-17%) [±1.18] 284.2 (-2%) [±1.45]
RandomAccess (GUPS) 0.0126 [±0.00029] 0.0124 (-2%) [±0.00044] 0.0125 (-1%) [±0.00032]

Tuned run not warranted
Stream (GB/s)

Add 45.8 [±0.21] 45.6 (-0%) [±0.55] 45.0 (-2%) [±0.19]
Copy 41.3 [±0.06] 41.2 (-0%) [±0.08] 40.1 (-3%) [±0.21]
Scale 41.2 [±0.08] 41.2 (-0%) [±0.06] 40.0 (-3%) [±0.15]
Triad 45.6 [±0.12] 45.6 (-0%) [±0.49] 45.0 (-1%) [±0.20]

tuning KVM by vCPU pinning and exposing cache topology
makes little difference to the performance. While further
experimentation is required to pinpoint the source of KVM
overhead, we suspect it is caused by the extra TLB pressure
of nested paging. PXZ may benefit from using large pages.

B. HPC—Linpack

Linpack solves a dense system of linear equations using
an algorithm that carries out LU factorization with partial
pivoting [21]. The vast majority of compute operations are
spent in double-precision floating point multiplication of a
scalar with a vector and adding the results to another vector.
The benchmark is typically based on a linear algebra library
that is heavily optimized for the specific machine architec-
ture at hand. We use an optimized Linpack binary (version
11.1.2.005)[3] based on the Intel Math Kernel Library (MKL).
The Intel MKL is highly adaptive and optimizes itself based
on both the available floating point resources (e.g., what form
of multimedia operations are available), as well as the cache
topology of the system. By default, KVM does not expose
topology information to VMs, so the guest OS believes it
is running on a uniform 32-socket system with one core per
socket.

Table I shows the performance of Linpack on Linux,
Docker, and KVM. Performance is almost identical on both
Linux and Docker–this is not surprising given how little OS
involvement there is during the execution. However, untuned
KVM performance is markedly worse, showing the costs of
abstracting/hiding hardware details from a workload that can
take advantage of it. By being unable to detect the exact nature
of the system, the execution employs a more general algorithm
with consequent performance penalties. Tuning KVM to pin
vCPUs to their corresponding CPUs and expose the underlying
cache topology increases performance nearly to par with
native.

We expect such behavior to be the norm for other similarly
tuned, adaptive executions, unless the system topology is
faithfully carried forth into the virtualized environment.

C. Memory bandwidth—Stream

The STREAM benchmark is a simple synthetic benchmark
program that measures sustainable memory bandwidth when

TABLE II. STREAM COMPONENTS

Name Kernel Bytes per FLOPS per
iteration iteration

COPY a[i] = b[i] 16 0
SCALE a[i] = q⇤b[i] 16 1

ADD a[i] = b[i]+ c[i] 24 1
TRIAD a[i] = b[i]+q⇤ c[i] 24 2

performing simple operations on vectors [21]. Performance
is dominated by the memory bandwidth of the system with
the working set engineered to be significantly larger than
the caches. The main determinants of performance are the
bandwidth to main memory, and to a much lesser extent, the
cost of handling TLB misses (which we further reduce using
large pages). The memory access pattern is regular and the
hardware prefetchers typically latch on to the access pattern
and prefetch data before it is needed. Performance is therefore
gated by memory bandwidth and not latency. The benchmark
has four components: COPY, SCALE, ADD and TRIAD that are
described in Table II.

Table I shows the performance of Stream across the three
execution environments. All four components of Stream per-
form regular memory accesses where once a page table entry
is installed in the TLB, all data within the page is accessed
before moving on to the next page. Hardware TLB prefetching
also works very well for this workload. As a consequence,
performance on Linux, Docker, and KVM is almost identical,
with the median data exhibiting a difference of only 1.4%
across the three execution environments.

D. Random Memory Access—RandomAccess

The Stream benchmark stresses the memory subsystem in
a regular manner, permitting hardware prefetchers to bring in
data from memory before it is used in computation. In contrast,
the RandomAccess benchmark [21] is specially designed to
stress random memory performance. The benchmark initializes
a large section of memory as its working set, that is orders
of magnitude larger than the reach of the caches or the
TLB. Random 8-byte words in this memory section are read,
modified (through a simple XOR operation) and written back.
The random locations are generated by using a linear feedback
shift register requiring no memory operations. As a result, there
is no dependency between successive operations permitting
multiple independent operations to be in flight through the
system. RandomAccess typifies the behavior of workloads with
large working sets and minimal computation such as those with
in-memory hash tables and in-memory databases.

As with Stream, RandomAccess uses large pages to reduce
TLB miss overhead. Because of its random memory access
pattern and a working set that is larger than the TLB reach,
RandomAccess significantly exercises the hardware page table
walker that handles TLB misses. As Table I shows, On our
two-socket system, this has the same overheads for both
virtualized and non-virtualized environments.

E. Network bandwidth—nuttcp

We used the nuttcp tool [7] to measure network bandwidth
between the system under test and an identical machine

"In general, Docker equals or exceeds KVM 
performance in every case we tested. [...]  

Even using the fastest available forms of par- 
avirtualization, KVM still adds some overhead to 
every I/O operation [...].  

Thus, KVM is less suitable for workloads that are 
latency-sensitive or have high I/O rates. 

5. Conclusions and Future Work, 
An Updated Performance Comparison of Virtual 
Machines and Linux Containers

Zusammenfassung

Container vs. bare-metal: 
Although containers themselves have almost no overhead, Docker is 
not without performance gotchas. Docker volumes have noticeably 
better performance than files stored in AUFS. Docker’s NAT also 
introduces overhead for work- loads with high packet rates.  
These features represent a tradeoff between ease of management and 
performance and should be considered on a case-by-case basis.

An Updated Performance Comparison of
Virtual Machines and Linux Containers

Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio
IBM Research, Austin, TX

{wmf, apferrei, rajamony, rubioj}@us.ibm.com

Abstract—Cloud computing makes extensive use of virtual
machines (VMs) because they permit workloads to be isolated
from one another and for the resource usage to be somewhat
controlled. However, the extra levels of abstraction involved in
virtualization reduce workload performance, which is passed
on to customers as worse price/performance. Newer advances
in container-based virtualization simplifies the deployment of
applications while continuing to permit control of the resources
allocated to different applications.

In this paper, we explore the performance of traditional
virtual machine deployments, and contrast them with the use of
Linux containers. We use a suite of workloads that stress CPU,
memory, storage, and networking resources. We use KVM as a
representative hypervisor and Docker as a container manager.
Our results show that containers result in equal or better
performance than VMs in almost all cases. Both VMs and
containers require tuning to support I/O-intensive applications.
We also discuss the implications of our performance results for
future cloud architectures.

I. INTRODUCTION

Virtual machines are used extensively in cloud computing.
In particular, the state-of-the-art in Infrastructure as a Service
(IaaS) is largely synonymous with virtual machines. Cloud
platforms like Amazon EC2 make VMs available to customers
and also run services like databases inside VMs. Many Plat-
form as a Servive (PaaS) and Software as a Service (SaaS)
providers are built on IaaS with all their workloads running
inside VMs. Since virtually all cloud workloads are currently
running in VMs, VM performance is a crucial component
of overall cloud performance. Once a hypervisor has added
overhead, no higher layer can remove it. Such overheads then
become a pervasive tax on cloud workload performance. There
have been many studies showing how VM execution compares
to native execution [30, 33] and such studies have been a
motivating factor in generally improving the quality of VM
technology [25, 31].

Container-based virtualization presents an interesting al-
ternative to virtual machines in the cloud [46]. Virtual Private
Server providers, which may be viewed as a precursor to cloud
computing, have used containers for over a decade but many
of them switched to VMs to provide more consistent perfor-
mance. Although the concepts underlying containers such as
namespaces are well understood [34], container technology
languished until the desire for rapid deployment led PaaS
providers to adopt and standardize it, leading to a renaissance
in the use of containers to provide isolation and resource con-
trol. Linux is the preferred operating system for the cloud due
to its zero price, large ecosystem, good hardware support, good
performance, and reliability. The kernel namespaces feature
needed to implement containers in Linux has only become
mature in the last few years since it was first discussed [17].

Within the last two years, Docker [45] has emerged as a
standard runtime, image format, and build system for Linux
containers.

This paper looks at two different ways of achieving re-
source control today, viz., containers and virtual machines
and compares the performance of a set of workloads in both
environments to that of natively executing the workload on
hardware. In addition to a set of benchmarks that stress
different aspects such as compute, memory bandwidth, mem-
ory latency, network bandwidth, and I/O bandwidth, we also
explore the performance of two real applications, viz., Redis
and MySQL on the different environments.

Our goal is to isolate and understand the overhead intro-
duced by virtual machines (specifically KVM) and containers
(specifically Docker) relative to non-virtualized Linux. We
expect other hypervisors such as Xen, VMware ESX, and
Microsoft Hyper-V to provide similar performance to KVM
given that they use the same hardware acceleration features.
Likewise, other container tools should have equal performance
to Docker when they use the same mechanisms. We do not
evaluate the case of containers running inside VMs or VMs
running inside containers because we consider such double
virtualization to be redundant (at least from a performance
perspective). The fact that Linux can host both VMs and
containers creates the opportunity for an apples-to-apples com-
parison between the two technologies with fewer confounding
variables than many previous comparisons.

We make the following contributions:

• We provide an up-to-date comparison of native, con-
tainer, and virtual machine environments using recent
hardware and software across a cross-section of inter-
esting benchmarks and workloads that are relevant to
the cloud.

• We identify the primary performance impact of current
virtualization options for HPC and server workloads.

• We elaborate on a number of non-obvious practical
issues that affect virtualization performance.

• We show that containers are viable even at the scale
of an entire server with minimal performance impact.

The rest of the paper is organized as follows. Section II de-
scribes Docker and KVM, providing necessary background to
understanding the remainder of the paper. Section III describes
and evaluates different workloads on the three environments.
We review related work in Section IV, and finally, Section V
concludes the paper.

Source: Felter et al. (2014). An updated performance comparison of virtual machines and linux containers.



Source: http://cdn.meme.am/instances/53646903.jpg



„Containers do not contain“
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Zitate
aka „Meinungen“



"Some people make the mistake of 
thinking of containers as a better and 
faster way of running virtual 
machines.
From a security point of view, 
containers are much weaker."

Dan Walsh,
SELinux architect



"Virtual Machines might be more 
secure today, but containers are 
definitely catching up."

Jerome Petazzoni,
Senior Software Engineer at Docker



"You are absolutely deluded, if not 
stupid, if you think that a worldwide 
collection of software engineers who 
can’t write operating
systems or applications without 
security holes, can then turn around 
and suddenly write virtualization 
layers without security holes."

Theo de Raadt,
OpenBSD project lead



"Docker’s security status is best 
described as “it’s complicated”.“

Jerome Petazzoni,
Senior Software Engineer at Docker
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Erbsenzählerei



Eigentlich...
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Schlechter Ruf?



Schlechter Ruf?
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Docker Shocker



Source: https://github.com/gabrtv/shocker
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Missverständnisse...



Sources: https://blog.jessfraz.com/posts/docker-
containers-on-the-desktop.html
https://news.ycombinator.com/item?id=9086751
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Bisschen weiter gespielt…

Das ganze dann noch in einer NFS-Umgebung:

[badguy@docker ~]# cd /home/goodguy
bash: cd: /home/goodguy: Permission denied

[badguy@docker ~]# id badguy && id goodguy
uid=1234(badguy) gid=1234(badguy) groups=1234(badguy),1337(docker)
uid=1000(goodguy) gid=1000(goodguy) groups=1000(goodguy)

[badguy@docker ~]# docker run -it -v /home:/nfs3home -u 1000 busybox sh
/ $ id
uid=1000 gid=0(root)
/ $ touch /nfs3home/goodguy/badguy_WAS_HERE && exit



Wir erinnern uns...

Source: http://cdn.meme.am/instances/53646903.jpg
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Unpatched Vulnerabilities



Why so serious?

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/



ORIGINAL PHOTO (CC) BY IAN KLUFT

CVE-2015-0235
aka

GHOST

“GHOST is a buffer overflow bug affecting the gethostbyname() and 
gethostbyname2() function calls in the glibc library. This vulnerability allows 

a remote attacker that is able to make an application call to either of these 
functions to execute arbitrary code.”

66.6 %
of analyzed images on Quay.io

Coincidence? I think not !
Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/



CVE-2014-0160
aka

Heartbleed

“The TLS and DTLS implementations in OpenSSL do not properly handle 
Heartbeat Extension packets, which allows remote attackers to obtain 

sensitive information from process memory via crafted packets that trigger 
a buffer over-read.”

ORIGINAL PHOTO (CC) BY IAN KLUFT

80 %
of analyzed images on Quay.io

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/



Most containers built on same base 
layers

Source: https://docs.google.com/presentation/d/1toUKgqLyy1b-pZlDgxONLduiLmt2yaLR0GliBB7b3L0/



Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins

?



A Year in Docker Security...
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Defense in depth
multiple layers of security controls

„secure platform, secure access, secure content“
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Ausgangspunkt



Security on many layers...

↑Provision Mode | Operation Mode ↓

Source: VHPC16: Gantikow et al.
Providing Security in Container-based HPC Runtime Environments
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Provision Mode
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Image Provenance + Distribution
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▶ Tools and Technologies
– Official Repositories (-> *)
– Trusted Registries (on premises)
– Content Trust (image signing + verification)
– Docker Store (new, fully „compliant, commercially supported software“)
– Private Registry 

▶ Recommendations
– Build, sign and maintain your own (base) images
– Use a private repository with „curated“ images
– When relying on DockerHub: limit to official repositories

Image Provenance + Distribution
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Image Content
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Clair



| 24-06-2017 | Holger Gantikow | © Atos 
GBU Germany | science + computing ag | IT Service
64

▶ Aus dem CoreOS-Projekt, OpenSource – Apache 2.0 Lizenz

▶ Integriert in die Registry Quay.io
– Prüft dort jedes neue Image
– Prüft bestehende Images regelmäßig auf neu gemeldete Schwachstellen

▶ Alternativen (kommerziell):
– Project Nautilus aka „Docker Security Scanning“
– OpenShift: Red Hat CloudForms mit OpenSCAP Image Scans
– IBM Bluemix (Vulnerability Advisor?)

– Konzept ähnlich – oft mehr Features

Clair
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Funktionsweise

▶ Vorgehen – für alle Schichten eines Images:
– Prüfe ob der Hersteller CVEs gemeldet hat

▶ Nachteile: 
– Schlägt nicht bei händisch installierter SW an
– Kein Schlangenöl, Lizenz-SW, „Compliance“, ...
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Operation Mode
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Host
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Control Groups + Namespaces
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Namespace Description
pid Process ID

net Network Interfaces, Routing 
Tables, …

ipc Semaphores, Shared Memory, 
Message Queues

mnt Root and Filesystem Mounts

uts Hostname, Domainname

user UserID and GroupID

Reminder: Namespaces + cgroups

Controller Description
blkio Access to block devices

cpu CPU time

devices Device access

memory Memory usage

net_cls Packet classification

net_prio Packet priority

▶ Essentiellste Features
– Namespaces : isolierter Betrieb
– Cgroups: Limitierung Ressourcenverbrauch
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Capabilities + Kernel Hardening
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▶ Capabilities : sehr grob, Add + Drop möglich – genau wissen was man tut ;)
▶ Übersicht über Capabilities
– http://man7.org/linux/man-pages/man7/capabilities.7.html

Capabilities + Kernel Hardening

Capatibilies auch aktivierbar – hier Hostname setzen
$ docker run -rm -ti busybox sh
/ # hostname foo
hostname: sethostname: Operation not permitted
$ docker run -rm -ti —cap-add=SYS_ADMIN busybox sh
/ # hostname foo<hostname changed>

▶ Kernel Hardening: möglich hier zu Patchen, ggf Support-Konflikt
– Grsecurity, PaX – Ausnutzung von Buffer Overflows reduzieren, ...
– Im HPC Bereich nicht so gerne gesehen, da ggf Code zur Laufzeit generiert
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Mandatory Access Control Systems
SELinux, AppArmor + bane



Sources: http://www.projectatomic.io/docs/docker-and-selinux/
https://docs.docker.com/engine/security/apparmor/#understand-the-policies
https://github.com/jessfraz/bane

AppArmor Policy auswählen
$ docker run --rm -it --security-opt
apparmor=docker-default/or-my-policy
hello-world
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Linux Auditing System
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Linux Auditing System (auditd)

▶ Zugriffsüberwachungssystem (!Enforcement)
▶ Logger für SELinux
▶ Regeln auf Basis von Dateien und Syscalls

# monitor unlink() and rmdir() system calls.
-a exit,always -S unlink -S rmdir
# monitor open() system call by UID 4711.
-a exit,always -S open -F loginuid=4711
# monitor write-access and change in file properties (r/w/x) of the these files.
-w /etc/passwd -p wa

▶ Einsatz: Missbrauch und unauthorisierte Aktivitäten, Loggen von:
– Docker related activities (Containerstart, Änderung Config, Zertifikate, Keys,...)
– Erweiterung bestehender Audits + Integration in Monitoring
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OpenSCAP/Container Compliance

OBSOLET!
Jetzt Teil von OpenSCAP „oscap-docker“



Link: https://github.com/OpenSCAP/container-compliance



| 24-06-2017 | Holger Gantikow | © Atos 
GBU Germany | science + computing ag | IT Service
78

Docker Bench for Security



Link: https://github.com/docker/docker-bench-security

Start des Benchmarks
docker run -it --net host --pid host --cap-add
audit_control -v /var/lib:/var/lib \ -v 
/var/run/docker.sock:/var/run/docker.sock -v 
/usr/lib/systemd:/usr/lib/systemd \ -v /etc:/etc -
-label docker_bench_security docker/docker-bench-
security
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Container Runtime
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Authorization Plugins



Link: https://github.com/twistlock/authz
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User Namespaces



Rooting out Root:
User namespaces in Docker

Phil Estes
Senior Technical Staff Member, Open Technologies, IBM Cloud

ContainerCon 2015

@estesp

estesp@gmail.com

Why user namespaces?

Security

Currently, by default, 
the user inside the 
container is root; 
more specifically uid 
= 0, gid = 0.  If a 
breakout were to 
occur, the container 
user is root on the 
host system.

Multitenancy

Sharing Docker 
compute resources 
among more than 
one user requires 
isolation between 
tenants.  Providing 
uid/gid ranges per 
tenant will allow for 
this separation.

User Accounting

Any per-user 
accounting 
capabilities are 
useless if everyone is 
root.  Specifying 
unique uids enables 
resource limitations 
specific to a 
user/uid. 

ContainerCon 2015

3

Added Security

4

ContainerCon 2015

$ docker run -v /bin:/host/bin -ti busybox /bin/sh

/ # id
uid=0(root) gid=0(root) groups=10(wheel)
/ # cd /host/bin
/host/bin # mv sh old
mv: can't rename 'sh': Permission denied
/host/bin # cp /bin/busybox ./sh
cp: can't create './sh': File exists

Host root ≠ Container root

ContainerCon 2015

So where are we now?

User namespace support in Linux kernel 3.8 (early 2013)

User namespace support in Go 1.4 (December 2014)

User namespace support in libcontainer (February 2015)

22

User Namespace Status

◉ Namespace sharing/ordering details & design are resolved; 
implementation/changes underway in runC and libnetwork

> runC hooks PR: https://github.com/opencontainers/runc/pull/160 

> libnetwork tracker: https://github.com/docker/libnetwork/issues/429 

◉ “Phase 1” user namespace implementation (remapped root 
per daemon instance) targeted for Docker 1.9

> tracking issue: https://github.com/docker/docker/issues/15187 

> code PR: https://github.com/docker/docker/pull/12648 

◉ “Phase 2”--providing full maps and allowing per-container 
maps--is still under discussion

ContainerCon 2015

23

“Phase 1” Usage Overview

ContainerCon 2015

# docker daemon --root=2000:2000 ...
drwxr-xr-x root:root  /var/lib/docker
drwx------ 2000:2000  /var/lib/docker/2000.2000

$ docker run -ti --name fred --rm busybox /bin/sh
/ # id
uid=0(root) gid=0(root) groups=10(wheel)

$ docker inspect -f ‘{{ .State.Pid }}’ fred
8851
$ ps -u 2000
  PID TTY          TIME CMD
 8851 pts/7    00:00:00 sh

Start the daemon with a remapped root 
setting (in this case uid/gid = 2000/2000)

Start a container and verify that inside the 
container the uid/gid map to root (0/0)

You can verify that the container process 
(PID) is actually running as user 2000

24Link: https://events.linuxfoundation.org/sites/events/files/slides/User Namespaces - ContainerCon 2015 - 16-9-final_0.pdf
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Seccomp Profiles



Source: https://docs.docker.com/engine/security/seccomp/#significant-syscalls-blocked-by-the-default-profile
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Und sonst noch?

docker run ...
--pid-limit: PID limitations per container, prevent fork-bombs
--security-opt=no-new-privileges: prevent privilege escalation
--readonly: Container / RO, for immutable container images



Source: Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S., & Foschini, L. (2015). 
Securing the infrastructure and the workloads of linux containers.

Securing the infrastructure and the workloads of
linux containers

Massimiliano Mattetti⇤, Alexandra Shulman-Peleg†, Yair Allouche†, Antonio Corradi⇤, Shlomi Dolev‡,
Luca Foschini⇤

⇤ CIRI ICT, University of Bologna
† IBM Cyber Security Center of Excellence

‡ Ben-Gurion University

Abstract—One of the central building blocks of cloud platforms
are linux containers which simplify the deployment and man-
agement of applications for scalability. However, they introduce
new risks by allowing attacks on shared resources such as the
file system, network and kernel. Existing security hardening
mechanisms protect specific applications and are not designed
to protect entire environments as those inside the containers. To
address these, we present a LiCShield framework for securing
of linux containers and their workloads via automatic construc-
tion of rules describing the expected activities of containers
spawned from a given image. Specifically, given an image of
interest LiCShield traces its execution and generates profiles of
kernel security modules restricting the containers’ capabilities.
We distinguish between the operations on the linux host and
the ones inside the container to provide the following protec-
tion mechanisms: (1) Increased host protection, by restricting
the operations done by containers and container management
daemon only to those observed in a testing environment; (2)
Narrow container operations, by tightening the internal dynamic
and noisy environments, without paying the high performance
overhead of their on-line monitoring. Our experimental results
show that this approach is efficient to prevent known attacks,
while having almost no overhead on the production environment.
We present our methodology and its technological insights and
provide recommendations regarding its efficient deployment with
intrusion detection tools to achieve both optimized performance
and increased protection. The code of the LiCShield framework as
well as the presented experimental results are freely available for
use at https://github.com/LinuxContainerSecurity/LiCShield.git.

1 INTRODUCTION

Shifting away from traditional on-premises computing, cloud
environments allow to reduce costs via efficient utilization
of servers hosting multiple customers over the same shared
pools of resources. Linux containers are a disruptive technol-
ogy enabling better server utilization together with simplified
deployment and management of applications. Linux containers
provide a lightweight operating system level virtualization
via grouping resources like processes, files, and devices into
isolated spaces that give you the appearance of having your
own machine with near native performance and no additional
virtualization overheads. When comparing between containers
and VMs (in terms of CPU, memory, storage and networking
resources), containers exhibited better or equal results than VM
in almost all cases [24]. Furthermore, container management

software, such as the Docker1 technology [18], enable an
easy packaging and deployment of applications, supporting
the DevOps model of speeding up the development life-cycle
through rapid change, from prototype to production [29], [34].
As a result, linux containers became widely adopted across
all of the cloud layers such as Infrastructure as a service
(IaaS), where they allow achieving near-native performance
and Platform as a service (PaaS), linux containers are used
as deployment packages allowing easy on-boarding of appli-
cations (e.g. CloudFoundry [11]).

Container threats and protection mechanisms. While
optimizing the speed of deployment, linux containers were
not designed as a security mechanism to isolate between
untrusted and potentially malicious containers. They lack the
extra layer of virtualization and thus, are less secure than VMs
[2], [1]. Their vulnerabilities range from kernel exploits and
attacks on the shared linux host resources to misconfigurations,
side channels and data leakage [20]. Thus, container security
is considered an obstacle for an even wider adoption of
containerization technologies [4]. There are two main types
of protection mechanisms that can be applied to container
environments: security hardening mechanisms (e.g., AppArmor
[16] and SELinux [8]) and host based intrusion detection
systems. However, applying both mechanisms to container
environments is not straightforward due to several reasons.
First, there are limitations in properly deploying them in
container environments where part of the workload is executed
on the host and part inside the container, in which case multiple
processes and applications should be grouped and protected to-
gether. Second, their practical application to the noisy container
environments (see Section 5) is not straightforward.

Our approach and contributions. We present the LiC-
Shield framework for protection of Linux Containers and
their workloads. Given a container image of interest, we
automatically construct the security profiles protecting its ex-
ecution both on the linux host and within the container. We
provide a tool-set to trace and analyze containers’ executions,
separating the traces on the host and inside the containers.
We automatically construct AppArmor rules for two different

1Docker and the Docker logo are trademarks or registered trademarks of
Docker, Inc. in the United States and/or other countries. Docker, Inc. and
other parties may also have trademark rights in other terms used herein.

1st Workshop on Security and Privacy in the Cloud (SPC 2015)
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Attacked compo-
nent Mechanisms Compromised

components Examples

Host OS Kernel exploits Host and contain-
ers

A bug in the shared kernel may allow privilege escalation and arbitrary
code execution on the host [14]

Host OS
Shared resources, such as filesys-
tem, volumes, memory and net-
working

Host and contain-
ers

Shocker [15], is a code showing how a malicious container can scan
the filesystem shared with the host till it gets to the file /etc/shadow

with the passwords

Container
Engine

Vulnerabilities in the container en-
gine (running as root) or the li-
braries loaded by it

Host and contain-
ers

CVEs at [14], Vulnerabilities in libraries executed as root (e.g. xz

loaded for compression [13])

Shared Bin/Libs Loading malicious modules Containers Loading a malicious shared object /usr/lib/libnginx.so [27]

Applications Cross-container leakage Containers One container can access the packets of another container via ARP
spoofing [36]

TABLE I
EXAMPLE OF ATTACK ON THE COMPONENTS OF CONTAINER ENVIRONMENTS DEPICTED IN FIGURE 1. ADDITIONAL EXAMPLES CAN BE FOUND AT [12],

[14], [20]

Fig. 2. Approach Overview.

[13]. The profiles generated by LiCShield overcome these
limits by providing a fine-grained control over the containers
and protection against possible vulnerabilities of the container
management tools such as Docker daemon.

3 LICSHIELD APPROACH

Our main goal is to improve the security of cloud servers
executing linux containers, without requiring any significant
changes to the code of cloud platforms, linux distributions or
the container management software, automating the workflow
that can be applied without requiring any other intervention.

Figure 2 provides an overview of the LiCShield architecture
consisting of the following stages:

1) Trace and analyze: LiCShield traces the container creation
and execution in a synthetic testing environment, collect-
ing the information about the performed operations, their
resources and required permissions.

2) Define rules: The traces are processed to create rules that
are used for two purposes: first to generate improved
profiles for linux kernel security modules, such as Ap-
pArmor, restricting the containers’ capabilities; second to
generate rules that can be used to improve the intrusion
detection systems, by automatically feeding the categories
describing normal activities.

3) Co-deploy: We advocate that there is a need to differen-
tiate between the protection of the host and the container
workloads. For the critical host protection, we suggest to
co-deploy LiCShield with HIDS, to achieved higher levels

Fig. 3. Flow Overview.

of security. At the same time, we suggest that noisy, low
risk components can be protected only by LiCShield.

4) Optimize: LiCShield rules can be used to optimize the
learning phase of intrusion detection systems, by pro-
viding the description of the expected activities. This
has several benefits: first, reducing the number of false
positive alerts; second, optimizing the setup and learning
phase. Collecting the information on a per-image basis
in pre-production with LiCShield, saves the overhead of
learning the execution of each of containers spawned from
the same image in the production setup.

4 LICSHIELD DESCRIPTION

Figure 3 shows the first step of the profile generation process,
that we call the tracing phase. In this stage LiCShield takes
a Dockerfile as input, starts the Docker daemon, sends to it
commands using its REST API, and records their execution.
Specifically, it first builds a new container image from the
Dockerfile and then runs this image in a new container, while
tracing the execution. Below we detail the main mechanisms
of LiCShield which include: (1) Tracing the kernel operations;

1st Workshop on Security and Privacy in the Cloud (SPC 2015)
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Application
Viele Möglichkeiten, wenig fertiges
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Anomaly Detection



Applying Bag of System Calls for Anomalous
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Abstract—In this paper, we present the results of using bags

of system calls for learning the behavior of Linux containers

for use in anomaly-detection based intrusion detection system.

By using system calls of the containers monitored from the host

kernel for anomaly detection, the system does not require any

prior knowledge of the container nature, neither does it require

altering the container or the host kernel.

I. INTRODUCTION

Linux containers are computing environments apportioned
and managed by a host kernel. Each container typically runs a
single application that is isolated from the rest of the operating
system. A Linux container provides a runtime environment for
applications and individual collections of binaries and required
libraries. Namespaces are used to assign customized views, or
permissions, applicable to its needed resource environment.
Linux containers typically communicate with the host kernel
via system calls.

By monitoring the system calls between the container and
the host kernel, one can learn the behavior of the container in
order to detect any change of behavior, which may reflect an
intrusion attempt against the container.

One of the basic approaches to anomaly detection using
system calls is the Bag of System Calls (BoSC) technique.
The BoSC technique is a frequency-based anomaly detection
technique, that was first introduced by Kang et al. in 2005 [1].
Kang et al. define the bag of system call as an ordered list
< c1, c2, . . . , cn >, where n is the total number of distinct
system calls, and c

i

is the number of occurrences of the system
call, s

i

, in the given input sequence. BoSC has been used for
anomaly detection at the process level [1] and at the level of
virtual machines (VMs) [2][3][4], and has shown promising
results.

The fewer number of processes in a container, as compared
to VM, results in reduced complexity. The reduced complexity
gives the potential for the BoSC technique to have high detec-
tion accuracy with a marginal impact on system performance
when applied to anomaly detection in containers.

In this paper, we study the feasibility of applying the BoSC
to passively detect attacks against containers. The technique
used is similar to the one introduced by [3]. We show

that a frequency-based technique is sufficient for detecting
abnormality in container behavior.

The rest of this paper is organized as follows. Section II
provides an overview of the system. Section III describes the
experimental design. Section IV discusses the results of the
experiments. Section V gives a brief summary of related work.
Section VI concludes with summary and future work.

II. SYSTEM OVERVIEW

In this paper, we use a technique similar to the one described
in [3] applied to Linux containers for intrusion detection. The
technique combines the sliding window technique [5] with the
bag of system calls technique [1] as described below.

The system employs a background service running on the
host kernel to monitor system calls between any Docker
containers and the host Kernel. Upon start of a container,
the service uses the Linux strace tool to trace all system
calls issued by the container to the host kernel. The strace
command reports system calls with their originating process
ID, arguments, and return values. A table of all distinct system
calls in the trace is also reported at the end of the trace along
with the total number of occurrences.

The full trace, and the count table, are stored into a log
file that is processed offline and used to learn the container
behavior after the container terminates. At this point, we are
not performing any real-time behavior learning or anomaly
detection. Therefore, dealing with the whole trace of the con-
tainer offline is sufficient for our proof-of-concept purposes.
However, for future purposes, where behavior learning and
anomaly detection is to be achieved in real time (in which case
the full trace would not be available), the learning algorithm
applied would slightly differ from the one described here.
However, the same underlying concepts will continue to apply.

The generated log file is then processed to create two
files, namely syscall-list file and trace file. The syscall-list file
holds a list of distinct system calls sorted by the number of
occurrences. The trace file holds the full list of system calls
as collected by strace after trimming off arguments, return
values, and process IDs. The count file is used to create an

Source: Abed et al.,  Applying Bag of System Calls for Anomalous Behavior Detection of Applications in Linux Containers.
Borhani, A. (2017). Anomaly Detection, Alerting, and Incident Response for Containers.



| 24-06-2017 | Holger Gantikow | © Atos 
GBU Germany | science + computing ag | IT Service
92

Geplante Verbesserung
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▶ Fully unprivileged containers
– Starten von Containern durch non-root User ohne Rechteerweiterung
– Hier in letzter Zeit einiges an Bewegung - aber noch weiter Weg

▶ Verstärkte Aktivierung von Sicherheitsfeatures „by default“
– Content Trust, ...

▶ Phase 2 der User Namespaces:
– custom namespaces per Container
– Upstream Kernel Support wohl schon da
– Ziel: Einsatz in multi-tenant Umgebungen für uid/gid mapping pro Kunde

Blick in die Zukunft

Link: Rootless containers - https://github.com/opencontainers/runc/pull/774 && https://www.cyphar.com/blog/post/rootless-
containers-with-runc



Was sonst noch geschah...
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Docker Secrets



Source: https://blog.docker.com/2017/02/docker-secrets-management/ && http://windsock.io/secrets-come-to-docker/
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Sysdig + Sysdig/Falco



Source: https://www.slideshare.net/Sysdig/trace-everything-when-apm-meets-sysadmins





Trotzdem!
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Prozesse
Nicht das Rad neu erfinden!

Bestehende Best Practices übertragen
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▶ als erstes „Einfallstor“ – viele offene Fragen – Prozesse übertragen!

– Verwaltung – Auth Integration, rollenbasiert, Integration dritter Quellen
– Scannen – Statische Analyse: Shellshock, SSL, ... – Umgang damit?
– Bauen – Prozess übertragbar? Integration in Configuration Management?
– Integrität – Build -> Run „untampered“? Signing?
– Umgang mit Third Party Images – ggf analog zu weiterer Software
– Lifecycle – Patchprozess, was wie updaten? Kehrwoche!
– Basisimage - unternehmensweit?

▶ Passwortverwaltung – wie Passwörter in Applikation einbringen

Images
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▶ root, docker-Gruppe – Default: Zugriff auf docker = erweitere Rechte
– Wer darf zugreifen – wie kontrollieren wer was laufen lässte? (RBAC)

▶ Monitoring 
– Was läuft alles – und woher ist das?
– Ist das “sicher“ (Patchlevel)? Kritische Modifikationen durch Container?

▶ „Forensic“ – wenn was schief ging
– Wer hat den bösen Container gestartet? Wer gebaut?
– Was hat ein bereits beendeter Container angerichtet? ... anrichten können?
– Logging – was, wohin, Standards?

▶ Bietet meine Enterprise Distribution die neusten Sicherheitsfeatures?
– Welche Docker Version ist so ggf verfügbar?

Sicherheit, Audits



Fully automated build process
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Abstract—Cloud based infrastructures have typically lever-
aged virtualization. However, the need for always shorter
development cycles, continuous delivery and cost savings in
infrastructures, led to the rise of containers. Indeed, containers
provide faster deployment than virtual machines and near-native
performance. In this work, we study the security implications of
the use of containers in typical use-cases, through a vulnerability-
oriented analysis of the Docker ecosystem. Indeed, among all
container solutions, Docker is currently leading the market. More
than a container solution, it is a complete packaging and software
delivery tool. In particular, we provide several contributions
to the analysis of the containers security ecosystem: using a
top-down approach, we point out vulnerabilities —present by
design or driven by some realistic use-cases— in the different
components of the Docker environment. Moreover, we detail real
world scenarios where these vulnerabilities could be exploited,
propose possible fixes, and, finally discuss the adoption of Docker
by PaaS providers.

KEYWORDS

Security, Containers, Docker, Virtual Machines, DevOps,
Orchestration.

I. INTRODUCTION

Virtualization-rooted cloud computing is a mature market.
There are both commercial and Open Source driven solutions.
For the former ones, one may mention Amazon’s Elastic
Compute Cloud (EC2) [1], Google Compute Engine [2] [3],
VMware’s vCloud Air, Microsoft’s Azure, while for the latter
ones examples include OpenStack combined with virtualiza-
tion technologies such as KVM or Xen.

Recent developments have set the focus on two main
directions. First, the acceleration of the development cycle
(agile methods and devops) and the increase in complexity of
the application stack (mostly web services and their frame-
works) trigger the need for a fast, easy-to-use way of pushing
code into production. Further, market pressure leads to the
densification of applications on servers. This means running
more applications per physical machine, which can only be
achieved by reducing the infrastructure overhead.

In this context, new lightweight approaches such as con-
tainers or unikernels [4] become increasingly popular, being
more flexible and more resource-efficient. Containers achieve
their goal of efficiency by reducing the software overhead
imposed by virtual machines (VM) [5] [6] [7], thanks to a
tighter integration of guest applications into the host operating
system (OS). However, this tighter integration also increases
the attack surface, raising security concerns.

The existing work on container security [8] [9] [10] [11]
focuses mainly on the relationship between the host and
the container. This is absolutely necessary because, while
virtualization exposes well-defined resources to the guest
system (virtual hardware resources), containers expose (with
restrictions) the host’s resources (e.g. IPC / filesystem) to the
applications. However, the latter feature represents a threat for
confidentiality and availability of applications running on the
same host.

Containers are now part of a complex ecosystem - from
container to various repositories and orchestrators - with a
high level of automation. In particular, container solutions
embed automated deployment chains [12] meant to speed
up code deployment processes. These deployment chains are
often composed of third parties elements, running on different
platforms from different providers, raising concerns about
code integrity. This can introduce multiple vulnerabilities that
an adversary can exploit to penetrate the system. To the best
of our knowledge, while deployment chains are fundamental
for the adoption of containers, the security of their ecosystem
has not been fully investigated yet.

The vulnerabilities we consider are classified, relatively
to a hosting production system, from the most remote ones
to the most local ones, using Docker as a case study. We
actually focus on Docker’s ecosystem for three reasons. First,
Docker successfully became the reference on the market of
container and associated DevOps ecosystem. In particular,
92% of surveyed people by ClusterHQ and DevOps.com [13]
are using or planning to use Docker in a container solution.
Second, security is the first barrier to container adoption
in production environment [13]. Finally, Docker is already
running in some environments which enable experiments and
exploring the practicality of some attacks.

In this paper, we provide several contributions. First,
we make a thorough list of security issues related to the
Docker ecosystem, and run some experiments on both local
(host-related) and remote (deployment-related) aspects of this
ecosystem. Second, we show that the design of this ecosystem
triggers behaviours (captured in three use-cases) that lower
security when compared to the adoption of a VM based
solution, such as automated deployment of untrusted code.
This is the consequence of both the close integration of
containers into the host system and of the incentive to scatter
the deployment pipeline at multiple cloud providers. Finally,
we argument on the fact that these use-cases trigger and

Attacking a Big Data 
Developer
Dr. Olaf Flebbe 
of ät oflebbe.de 

ApacheCon Bigdata Europe  
16.Nov.2016 Seville

Source: Combe et al.,  Containers - Vulnerability Analysis. + 
http://events.linuxfoundation.org/sites/events/files/slides/AttackingBigDataDeveloper_0.pdf



Source: https://effectivemachines.com/2017/06/02/docker-security-in-framework-managed-multi-user-environments/
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create resource restrictions around deployed applications.  The 
Docker container model supports and  enforces these restrictions 
by running applications in their own root filesystem, allows the 
use of separate user accounts, and goes a step further to provide 
application sandboxing using  Linux namespaces and cgroups 
to mandate resource constraints. While these powerful isolation 
mechanisms have been available in the Linux kernel for years, 
Docker brings forward and greatly simplifies the capabilities to 
create and manage the constraints around distributed applications 
containers as independent and isolated units.

Docker takes advantage of a Linux technology called namespaces[2], 
to provide the isolated workspace we call container. When a 
container is deployed, Docker creates a set of namespaces for that 
specific container, isolating it from all the other running applications.

Docker also leverages Linux control groups. Control groups[3] (or 
cgroups for short), are the kernel level functionality that allows 
Docker to control what resources each container has access 
to, ensuring good container multi-tenancy. Control groups allow 
Docker to share available hardware resources and, if required, 
set up limits and constraints for containers. A good example is 
limiting the amount of memory available to a specific container, so 
it doesn’t completely exhaust the resources of the host.

Process Restrictions
Restricting access and capabilities reduces the amount of surface 
area potentially vulnerable to attack.  Docker’s default settings are 
designed to limit Linux capabilities.  While the traditional view of 
Linux considers OS  security in terms of root privileges versus user 
privileges, modern Linux has evolved to support a more nuanced 
privilege model: capabilities. 

Linux capabilities allow granular specification of user capabilities 
and traditionally, the root user has access to every capability. 
Typical non-root users have a more restricted capability set, but 
are usually given the option to elevate  their access to root level 
through the use of sudo or setuid binaries. This may constitute a 
security risk.

The default bounding set of capabilities inside a Docker container 
is less  than half the total capabilities assigned to a Linux process 
(see Linux Capabilities figure). This reduces the possibility of  
escalation to a fully privileged root user through application-level 
vulnerabilities.  Docker employs an extra degree of granularity, 
which dramatically expands on the traditional root/non-root dichotomy.  
In most cases, the application containers do not need all the 
capabilities attributed to the root user, since the large majority of 
the tasks requiring this level of privilege are handled by the OS 
environment external to the container. Containers can run with a 
reduced capability set that does not negatively impact the applica-
tion and yet improves the overall security system levels and makes 
running applications more secure by default. This makes it difficult 
to provoke system level damages during intrusion, even if the 
intruder manages to escalate to root within a container because 
the container capabilities are fundamentally restricted.

Device & File  Restrictions
Docker further reduces the attack surface by restricting access 
by containerized applications to the physical devices on a host, 
through the use of the device resource control groups (cgroups) 
mechanism. Containers have no default device access and have 
to be explicitly granted device access. These restrictions protect a 
container host kernel and its hardware, whether physical or virtual, 
from the running applications.

Docker containers use copy-on-write file systems, which allow 
use of the same file system image as a base layer for multiple 
containers. Even when writing to the same file system image, 
containers do not notice the changes made by another container, 
thus effectively isolating the processes running in independent 
containers.

Any changes made to containers are lost if you destroy the 
container, unless you commit your changes. Committing changes 
tracks and audits changes made to base images as a new layer 
which can then be pushed as a new image for storage in Docker 
Hub and run in a container.  This audit trail is important in provid-
ing information to maintain compliance.  It also allows for fast and 
easy rollback to previous versions, if a container has been com-
promised or a vulnerability introduced. There are a few core Linux 
kernel file systems that have to be in the container environment 

References 
Parent Image
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Kernel

[2] http://man7.org/linux/man-pages/man7/namespaces.7.html 
[3] https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt     
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INTRODUCTION 
Containers have been around for a long time. But only recently, have container-based virtualization solutions 

become commonplace within the enterprise. Docker in particular is everywhere. But why? And what does it 

mean for enterprise security? Is vulnerability exploitation of Docker containers any different from vulnerability 

exploitation of application vulnerabilities on virtual machines? Are the ways to secure them any different? 

 

Before we jump into the vulnerability exploitation piece of the equation, it makes sense to review the security 

provided by the container solutions themselves – namely the workload isolation security. As with any new 

topic, it makes sense to start with a bit of history. How did we even get here? 

 

MODERN HISTORY OF LINUX CONTAINERS 
Today, Docker is the most widely used container-based virtualization technology. But Docker itself is an 

application (technically, a daemon), built on the container technology provided by the Linux kernel. The 

container technology provided by the Linux kernel isn’t new though, it has been evolving over time, for a very 

long time. 

 

Linux container technology is generally accepted to trace back to the days of chroot. Chroot was introduced 

way back in 1979 and started to address the isolation problem. Chroot, or “change root” changes the view 

of the file system for the process and its children. This was particularly useful for applications such as ftpd, to 

restrict the view of the ftp client to subfolders of the chroot’d parent. But chroot itself wasn’t built for security 
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In June 2015, ClusterHQ asked enterprises “What are the biggest barriers to putting containers in a 

production environment?” This time, an even higher percentage of enterprises (>60%) said that security was 

the #1 barrier to putting containers in a production environment.  

 
 

 

In August 2015, FlawCheck and one of our partners, surveyed enterprises asking which piece of the security 

equation was their top concern about running containers in production environments.  
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Downloading code without looking at it, that changes often and lacks any integrity check, then piping it to an 

interpreter and executing it as root (via putting your password into sudo, hopefully), is a fail. At least curl 

validates the certificate and get.docker.com doesn’t support DHE or export ciphers, but still it’s an awful 

workflow from a security perspective. 

 

After Docker is installed, you’ll realize that it’s actually a daemon that runs as root: 

 
 

 

In the event your PaaS is starting Docker with the incorrect parameters, such as host networking, users can 

actually shutdown the container host! 

 
 

 

Docker does actually provide a warning message against this and in practice, it’s easy to avoid, but enabling 

host networking has surprising consequences. 

 

In an older release of Docker, Docker actually blacklisted kernel calls (remember Docker is basically acting as 

a man-in-the-middle between the container and the kernel). By blacklisting kernel calls, Docker missed an 

Source: https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-
Environments-wp.pdf



Source: https://www.openshift.com/promotions/docker-security.html

ing hosts between users and will result in a higher number of VMs
and/or machines than reusing hosts, but is important for security.
The main reason is to prevent container breakouts resulting in a
user gaining access to another user’s containers or data. If a con‐
tainer breakout occurs, the attacker will still be on a separate VM or
machine and unable to easily access containers belonging to other
users.

Figure 1-1. Segregating containers by host

Similarly, if you have containers that process or store sensitive
information, keep them on a host separate from containers handling
less-sensitive information and, in particular, away from containers
running applications directly exposed to end users. For example,
containers processing credit-card details should be kept separate
from containers running the Node.js frontend.

Segregation and use of VMs can also provide added protection
against DoS attacks; users won’t be able to monopolize all the mem‐
ory on the host and starve out other users if they are contained
within their own VM.

In the short to medium term, the vast majority of container deploy‐
ments will involve VMs. Although this isn’t an ideal situation, it
does mean you can combine the efficiency of containers with the
security of VMs.

Segregate Containers by Host | 7

Set a USER
Never run production applications as root inside the container.
That’s worth saying again: never run production applications as root
inside the container. An attacker who breaks the application will
have full access to the container, including its data and programs.
Worse, an attacker who manages to break out of the container will
have root access on the host. You wouldn’t run an application as
root in a VM or on bare metal, so don’t do it in a container.

To avoid running as root, your Dockerfiles should always create a
nonprivileged user and switch to it with a USER statement or from an
entrypoint script. For example:

RUN groupadd -r user_grp && useradd -r -g user_grp user
USER user

This creates a group called user_grp and a new user called user
who belongs to that group. The USER statement will take effect for all
following instructions and when a container is started from the
image. You may need to delay the USER instruction until later in the
Dockerfile if you need to first perform actions that need root privi‐
leges such as installing software.

Many of the official images create an unprivileged user in the same
way, but do not contain a USER instruction. Instead, they switch
users in an entrypoint script, using the gosu utility. For example, the
entry-point script for the official Redis image looks like this:

#!/bin/bash
set -e
if [ "$1" = 'redis-server' ]; then
        chown -R redis .
        exec gosu redis "$@"
fi

exec "$@"

This script includes the line chown -R redis ., which sets the own‐
ership of all files under the images data directory to the redis user.
If the Dockerfile had declared a USER, this line wouldn’t work. The
next line, exec gosu redis "$@", executes the given redis com‐
mand as the redis user. The use of exec means the current shell is
replaced with redis, which becomes PID 1 and has any signals for‐
warded appropriately.
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Abstract
Operating System virtualization is an attractive feature for efficiency, speed andmod-
ern application deployment, amid questionable security. Recent advancements of
the Linux kernel have coalesced for simple yet powerful OS virtualization via Linux
Containers, as implemented by LXC, Docker, and CoreOS Rkt among others. Recent
container focused start-ups such as Docker have helped push containers into the
limelight. Linux containers offer nativeOS virtualization, segmentedby kernel names-
paces, limited through process cgroups and restricted through reduced root capa-
bilities, Mandatory Access Control and user namespaces. This paper discusses these
container features, as well as exploring various security mechanisms. Also included is
an examination of attack surfaces, threats, and related hardening features in order to
properly evaluate container security. Finally, this paper contrasts different container
defaults and enumerates strong security recommendations to counter deployment
weaknesses– helping support and explain methods for building high-security Linux
containers. Are Linux containers the future or merely a fad or fantasy? This paper
attempts to answer that question.

Default Capabilities (red for known high-risk capabilities)
Linux Capability LXC Docker CoreOS Rkt
CAP_AUDIT_CONTROL True False True
CAP_AUDIT_WRITE True True True
CAP_BLOCK_SUSPEND True False False
CAP_CHOWN True True True
CAP_DAC_OVERRIDE True True True
CAP_FSETID True True True
CAP_FOWNER True True True
CAP_IPC_OWNER True False True
CAP_IPC_LOCK True False False
CAP_KILL True True True
CAP_LEASE True False True
CAP_LINUX_IMMUTABLE True False True
CAP_MAC_OVERRIDE False False False
CAP_MAC_ADMIN False False False
CAP_DAC_READ_SEARCH True False True
CAP_MKNOD True True True
CAP_NET_ADMIN True False False
CAP_NET_RAW True True True
CAP_NET_BIND_SERVICE True True True
CAP_NET_BROADCAST True False True
CAP_SETUID True True True
CAP_SETGID True True True
CAP_SYS_ADMIN True False True
CAP_SETPCAP True True True
CAP_SETFCAP True True True
CAP_SYSLOG True False False
CAP_SYS_BOOT True False True
CAP_SYS_CHROOT True True True
CAP_SYS_NICE True False True
CAP_SYS_RESOURCE True False True
CAP_SYS_RAWIO True False False
CAP_SYS_PACCT True False False
CAP_SYS_MODULE False False False
CAP_SYS_PTRACE True False True
CAP_SYS_TIME False False False
CAP_SYS_TTY_CONFIG True False True
CAP_WAKE_ALARM True False False

5.6.1 Modifying Container Defaults
LXC default capabilities are controlled through the appropriate template configuration, using the lxc.cap
.keep and lxc.cap.drop directives. It is recommended to keep the smallest set of capabilities required by
the application via the whitelist approach lxc.cap.keep which specifies the capabilities to be retained in
the container, and all others are dropped (see the lxc.container.confmanapge formore information). Docker
capabilities can be kept and dropped via command line options --cap-add and --cap-drop respectively
when launching containers. CoreOS Rkt capabilities can be dropped using the Isolator settings. See the
rkt_caps_test.go testing code for example info on setting and using the capabilities-retain-set. Finally,
more information and recommendations can be found within the security recommendations in Section 10
on page 97.

41 | Understanding and Hardening Linux Containers NCC Group

Weakormissingprocfs and sysfs limits by default. Rkt is effectivelymissing a number of limits for procfs (/proc)
and sysfs (/sys), allowing information to leak from the container host or easily allowing attacks from the
guest container. This includes but is not limited to the following exploits discussed within 7.2.1 on page 52:
uevent_helper, sysrq-trigger, core_pattern, and modprobe. While some protections are enabled by default
via read-only bind mounts, these can be easily subverted by using CAP_SYS_ADMIN to remount the mounts
as read-write.

9.13 Container Defaults
Listed below are the relevant security features for the three major container platforms explored within this
paper. Each security feature is covered directly or indirectly within this paper and the title can be clicked,
for those which are covered in detail, in order to jump to the relevant section. To avoid any misconceptions,
the following parameters are defined as to their use in the table below:

• Default: The security feature is enabled by default.
• Strong Default: The most secure configuration is enabled by default.
• Weak Default: A less secure configuration is enabled by default.
• Optional: The security feature can be optionally configured. This is not a given weakness unless no other
equivilant feature can be configured or enabled.

• Not Possible: The security feature cannot be configured in any way, no documentation exists, the feature
is still under development, or the feature is not planned to be implemented.

Available Container Security Features, Requirements and Defaults

Security Feature LXC 2.0 Docker 1.11 CoreOS Rkt 1.3

User Namespaces Default Optional Experimental

Root Capability Dropping Weak Defaults Strong Defaults Weak Defaults

Procfs and Sysfs Limits Default Default Weak Defaults

Cgroup Defaults Default Default Weak Defaults

Seccomp Filtering Weak Defaults Strong Defaults Optional

Custom Seccomp Filters Optional Optional Optional

Bridge Networking Default Default Default

Hypervisor Isolation Coming Soon Coming Soon Optional

MAC: AppArmor Strong Defaults Strong Defaults Not Possible

MAC: SELinux Optional Optional Optional

No New Privileges Not Possible Optional Not Possible

Container Image Signing Default Strong Defaults Default

Root Interation Optional True False Mostly False

96 | Understanding and Hardening Linux Containers NCC GroupSource: https://www.nccgroup.trust/globalassets/our-
research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-10pdf/
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1.8 Audit Docker files and directories - /var/lib/docker (Scored) 

Profile Applicability: 

x  Level 1 - Linux Host OS 

Description: 

Audit /var/lib/docker. 

Rationale: 

Apart from auditing your regular Linux file system and system calls, audit all Docker 
related files and directories. Docker daemon runs with 'root' privileges. Its behavior 
depends on some key files and directories. /var/lib/docker is one such directory. It holds 
all the information about containers. It must be audited. 

Audit: 

Verify that there is an audit rule corresponding to /var/lib/docker directory. 

  
For example, execute below command: 

auditctl -l | grep /var/lib/docker  
This should list a rule for /var/lib/docker directory. 

Remediation: 

Add a rule for /var/lib/docker directory. 
  
For example, 
Add the line as below in /etc/audit/audit.rules file: 
  
-w /var/lib/docker -k docker  
  
Then, restart the audit daemon. For example, 
service auditd restart 

Impact: 
Auditing generates quite big log files. Ensure to rotate and archive them periodically. Also, 
create a separate partition of audit to avoid filling root file system. 
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2.11 Use authorization plugin (Scored) 

Profile Applicability: 

x  Level 2 - Docker 

Description: 

Use authorization plugin to manage access to Docker daemon. 

Rationale: 

Docker’s out-of-the-box authorization model is all or nothing. Any user with permission to 

access the Docker daemon can run any Docker client command. The same is true for callers 

using Docker’s remote API to contact the daemon. If you require greater access control, you 
can create authorization plugins and add them to your Docker daemon configuration. Using 

an authorization plugin, a Docker administrator can configure granular access policies for 

managing access to Docker daemon. 

Audit: 

ps -ef | grep dockerd 
  

Ensure that the '--authorization-plugin' parameter is set as appropriate. 

Remediation: 

Step 1: Install/Create an authorization plugin. 

Step 2: Configure the authorization policy as desired. 

Step 3: Start the docker daemon as below:  

dockerd --authorization-plugin=<PLUGIN_ID> 

Impact: 

Each docker command specifically passes through authorization plugin mechanism. This 

might introduce a slight performance drop. 

Default Value: 

By default, authorization plugins are not set up. 

 

Source: https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.12.0_Benchmark_v1.0.0.pdf



Docker Reference
Architecture: Securing
Docker Datacenter and
Security Best Practices

Secrets requires a Swarm mode cluster. You can use secrets to manage any sensitive data which a container needs at
runtime but you don't want to store in the image or in source control such as:

• Usernames and passwords

• TLS certificates and keys

• SSH keys

• Other important data such as the name of a database or internal server

• Generic strings or binary content (up to 500 kb in size)

Note: Docker secrets are only available to Swarm services, not to standalone containers. To use this feature,
consider adapting your container to run as a service with a scale of 1.

Another use case for using secrets is to provide a layer of abstraction between the container and a set of credentials.
Consider a scenario where you have separate development, test, and production environments for your application. Each
of these environments can have different credentials, stored in the development, test, and production swarms with the
same secret name. Your containers only need to know the name of the secret to function in all three environments.

When you add a secret to the swarm, Docker sends the secret to the Swarm manager over a mutual TLS connection. The
secret is stored in the Raft log, which is encrypted. The entire Raft log is replicated across the other managers, ensuring
the same high availability guarantees for secrets as for the rest of the swarm management data.

When you grant a newly-created or running service access to a secret, the decrypted secret is mounted into the container
in an in-memory filesystem at /run/secrets/<secret_name>. You can update a service to grant it access to additional
secrets or revoke its access to a given secret at any time.

DOCKER REFERENCE ARCHITECTURE: SECURING DOCKER DATACENTER AND SECURITY BEST PRACTICES
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Source:
https://success.docker.com/KBase/Docker_Reference_Architecture%3A_Securing_Docker_Datacenter_and_Security_Best_Practices
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Containers do not contain?
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Threads & Mitigation I – Container <-> ...

Threat Mitigation
DoS against Host +other containers
(noisy neighbours) | Forkbomb

Cgroups, Quotas, Kernel PID limits

Access to host and private 
information + other containers

Namespaces, seccomp, LSM*: 
AppArmor, SELinux

Kernel modification + module load Capabilities (dropped by default), 
seccomp, LSM, no –privileged

API socket access (for Docker 
administration + full control over
other container)

Only share socket with AuthZ
limitations, TLS for TCP endpoints

* LSM = Linux Security Modules
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Threads & Mitigation II – External -> Container

Threat Mitigation
DDoS attacks Monitoring infrastructure + 

Cgroups, Quotas, Kernel PID limits
(Malicious) remote access Application security model *

Secure passwords *
--readonly FS *

Exploits Static vul. scanning (Clair, ...)
Dynamic scanning

Application Security Not container specific *
Reduced impact by container walls

* same procedure as non-containerized
** cgroups usage more likely in containerized environments



Source: https://twitter.com/Ben_Hall/status/728596633978572801



Source: https://twitter.com/Ben_Hall/status/728596633978572801



| 24-06-2017 | Holger Gantikow | © Atos 
GBU Germany | science + computing ag | IT Service
119

▶ Container != VM, != Sandbox
– Sicherheit kann mit Containern besser als bare metal sein

▶ Inzwischen sehr viele Möglichkeiten zur Absicherung
– Features wollen genutzt werden! Und manchmal erst aktiviert ;)
– Vertrauensvolle Images + sicher konfigurierter Host + limitierter Zugriff + 

gesunder Menschenverstand...
– ... - Faktor Mensch wie so oft die schwächste Komponente

▶ Etablierte Prozesse und Verfahren anwenden
– Nicht weil es „so leicht“ geht bewährte Konzepte über Bord werfen

Zusammenfassung



Source: cdn2.spiegel.de/images/image-806145-galleryV9-ygfz.jpg
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