
Optimized Bash
Use New Bash 4 Functions and Builtins To Write Faster Scripts

TÜBIX 2016, 11 June, Gerik Huland

1 / 18

Use pure bash!

2 / 18

Speed up
scripts

Less CPU time by reducing forking and sub processing.
Avoid calling helper programs like sed, awk, grep, tr as
they can be expensive.

3 / 18

Speed up
scripts

Use the
power of
bash

Don't bother learning awk and sed. Miss out to learn
dozens of options to tr, xargs, grep etc. We often see code
snippets like this

du -bc . |grep total|awk '{print $1}'

This is because people use awk only for line splitting.
Using it properly would be

du -bc . |awk '$2=="total"{print $1}'

Pure Bash: Use array for splitting *

while read -a out; do
 ["${out[1]}" = total] && break
done < <(du -bc .); print ${out[0]}

Yes this more lengthy. Otherwise learn proper awk! :)

* will be explained in more detail later

4 / 18

How to start?

5 / 18

Check out new builtins and abilities of Bash 4

6 / 18

Just an
assortment

Regular Expressions

Best practice: put regex in a variable
$ regex="(̂[̂:]+): "
$ [[message: this is Bash 4.0 =~ $regex]]
$ echo ${BASH_REMATCH[1]}
message

7 / 18

Just an
assortment

Regular Expressions

Best practice: put regex in a variable
$ regex="(̂[̂:]+): "
$ [[message: this is Bash 4.0 =~ $regex]]
$ echo ${BASH_REMATCH[1]}
message

Associative Arrays

$ ARRAY=([this]="that" [here]="there")
$ echo ${ARRAY[this]}
that

8 / 18

Just an
assortment

Regular Expressions

Best practice: put regex in a variable
$ regex="(̂[̂:]+): "
$ [[message: this is Bash 4.0 =~ $regex]]
$ echo ${BASH_REMATCH[1]}
message

Associative Arrays

$ ARRAY=([this]="that" [here]="there")
$ echo ${ARRAY[this]}
that

Upper/Lower Case

$ a="lower UPPER"; echo ${â}
Lower UPPER
$ echo ${â }̂
LOWER UPPER
$ echo ${a,,}
lower upper

9 / 18

More Here Strings

$ $a="some text"
$ read b <<<"$a"
$ echo $b
some

10 / 18

More Here Strings

$ $a="some text"
$ read b <<<"$a"
$ echo $b
some

Less typing for redirects

one expression for stdout and stderr
$ some_program |& grep "some stuff on stderr"
$ rmdir a_dir >& /dev/null

11 / 18

And Now Really Speed Up Scripts!

12 / 18

Avoid
forking

Keep Clear of
Pipes

This doesn't work!

cat somefile|while read a; do
 ["$a" = "some text"] && break
done
echo $a

nothing gets printed! $a's scope is in the subshell only.

This works!

while read a; do
 ["$a" = "some text"] && break
done <somefile
echo $a
> some text

Even with command output

...
done < <(some_command)

13 / 18

Avoid
Forking

Keep Clear of
Pipes

Use IFS For
Splitting

No need for awk's line splitting!

Save IFS
OLDIFS="$IFS"
Split on colon, read into array
IFS=":"
while read -a line; do
 echo ${line[0]}
done < some_file
IFS="$OLDIFS"

14 / 18

Avoid
Forking

Keep Clear of
Pipes

Use IFS For
Splitting

Eval is cheaper
than backticks.
Really?

Really! Backticks (or $()) fork a subprocess!

No Problem if you run an external program (forks
anyway)
Consider when you use bash builtins or functions, e.g.
Take a look here
http://www.fvue.nl/wiki/Bash:_Passing_variables_by_reference
Consider using upvar (check it out in the bash-
completion code)

f() { local b; g b; echo $b; } # (1)
g() { local "$1" && upvar $1 bar; } # (2)
f # Ok: b=bar

In upvar eval is used for variable assignment in a
secure way.

15 / 18

http://www.fvue.nl/wiki/Bash:_Passing_variables_by_reference

But I Just Wanted To Write This Little One Liner!

16 / 18

Just do it. Dont bother optimizing shell code when writing one
liners.

Take into account the platform your code runs on
low power/embedded will be more thankful
but their might be only busybox and a few gnu
tools

Looping over 100,000 lines of input will show more
benefit
Happily use new functions and builtins that make
your code faster to type

b=${â }̂
instead of
b=$(echo $a|tr '[[:lower:]]' '[[:upper:]]')

If you need associative arrays. My personal advice:
consider using more elaborated scripting
languages like

perl
python
ruby
etc.

17 / 18

And Now: Happy Bashing!
Slideshow created using remark.

18 / 18

http://github.com/gnab/remark

